• Title/Summary/Keyword: Wall Emissivity

Search Result 35, Processing Time 0.019 seconds

A Numerical Analysis of Characteristics of Combined Heat Transfer in Laminar Layer Along Cylinderical Periphery by P-N Method (P-N 근사법을 이용한 원관주위 층류 경계층내 조합 열전달 전달 특성 해석)

  • 이종원;이창수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.10-19
    • /
    • 1995
  • Heat trnasfer for absorbing and emitting media in laminar layer along the cylinders has been analyzed. Governing equation are transformed to local nonsimilarity equations by the dimensional analysis. The effects of the Stark number, Prandtl number, Optical radius and wall emissivity are mainly investigated. For the formal solution a numerical integration is performed and the results are compared with those obtained by P-1 and P-3 approximation. The results show that boundary layers consist of conduction-convection-radiation layer near the wall and convection-radiation layer far from the wall. As the Stark number of wall emissivity increases the local radiative heat flux is increased. The Pradtl number or curvature variations do not affect the radiative heat flux from the wall, but The Prandtl number or wall emissivity variations affect the conduction heat flux. Consequently the total heat flux from the wall are affected by the Prandtl number or wall emissivity variation.

  • PDF

Radiation-Laminar Free Convection in a Square Duct with Specular Reflection by Absorbing-Emitting Medium

  • Byun, Ki-Hong;Im, Moon-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1346-1354
    • /
    • 2002
  • The purpose of this work is to study the effects of specularly reflecting wall under the combined radiative and laminar free convective heat transfer in an infinite square duct. An absorbing and emitting gray medium is enclosed by the opaque and diffusely emitting walls. The walls may reflect diffusely or specularly. Boussinesq approximation is used for the buoyancy term. The radiative heat transfer is evaluated using the direct discrete ordinates method. The parameters under considerations are Rayleigh number, conduction to radiation parameter, optical thickness, wall emissivity and reflection mode. The differences caused by the reflection mode on the stream line, and temperature distribution and wall heat fluxes are studied. Some differences are observed for the categories mentioned above if the order of the conduction to radiation parameter is less than order of 10$\^$-3/ fer the range of Rayleigh number studied. The differences at the side wall heat flux distributions are observed as long as the medium is optically thin. As the top wall emissivity decreases, the differences between these two modes are increased. As the optical thickness decreases at the fixed wall emissivity, the differences also increase. The difference of the streamlines or the temperature contours is not as distinct as the side wall heat flux distributions. The specular reflection may alter the fluid motion.

Analysis on Surface Temperature Control of an Insulated Vertical Wall Under Thermal Radiation Environment (단열재가 부착된 수직벽 표면의 온도제어 해석)

  • Kang, Byung-Ha;Pi, Chang-Hun;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • In this study, a rational procedures for estimation of insulation thickness of a vertical wall for condensation control or personnel protection has been investigated. Design parameters are height of the wall, thermal conductivity, emissivity, and operating temperatures. The results indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient.

Surface Temperature Control of an Insulated Horizontal Pipe under Thermal Radiation Environment (복사효과를 포함하는 수평관 표면의 온도제어)

  • Kang, Byung-Ha;Pi, Chang-Hun;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • Procedures for estimation of insulation thickness for a horizontal pipe for condensation control or personnel protection has been investigated, parallel to the previous work of a vertical wall case. Parameters include pipe diameter, emissivity, thermal conductivity, and operating temperatures. The results indicated that the surface emissivity plays a very important role in the design of insulation, specially for the case of high temperature application with low Bi. The effect of surface radiation in such case could be up to 65% of the total. Required insulation thickness for the surface temperature control increases as pipe diameter increases and as surface emissivity decreases. Adequate revision of specifications or standards to include newly invented insulation materials with high emissivity has been also suggested.

A Study on Combined Heat Transfer in a Enclosure with a Block (밀폐공간내의 피가열체 존재시 복합열전달에 관한 연구)

  • Hong, Seong-Kook;Ryou, Hong-Sun;Hong, Ki-Bae;Chae, Soo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2000
  • This paper numerically deals with combined heat transfer in a enclosure with a block. The block affected by hot wall is located centrally in the enclosure with a radiating gray gas. The discrete ordinate method(DOM) was used for solving the radiative transfer equation. Both laminar and turbulent cases were investigated for various Rayleigh number and standard k-$\varepsilon$ model was adopted to turbulent case. The effects of optical thickness, wall emissivity and fluid-solid thermal conductivity ratio are investigated on the flow and temperature fields. This study shows that as the wall emissivity decreases, the temperature distribution gradually becomes uniform and the heat transfer is reduced in enclosure. It is expected that this study can help to design the energy system related to the combined heat transfer and operate it safely.

  • PDF

Two-Dimensional Laminar Natural Convection Heat Transfer with Surface Radiation in a Cavity (캐비티내에서 표면복사를 고려한 2차원 층류 자연대류 열전달)

  • Park, H.Y.;Park, K.W.;Han, C.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.217-232
    • /
    • 1992
  • A Numerical study on two-dimensional laminar natural convection with and without surface radiation in fully or partially open square cavity was performed. The cavity has one vertical heated wall facing a vertical opening and two horizontal insulated walls. The pressure boundary condition was applied to the opening instead of the velocity boundary condition. The results of this study showed that the increase of partition length decreased the convective and the radiative Nusselt numbers. It was also found that the increase of wall emissivity decreased the convective Nusselt numbers but increased the radiative Nusselt numbers.

  • PDF

Effects of surface radiation on the insulation for mechanical system (표면복사특성이 단열성능에 미치는 영향)

  • Oh, Dong-Eun;Park, Jong-Il;Lee, Min-Woo;Hong, Jin-Kwan;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1006-1011
    • /
    • 2006
  • In this study, a rational procedures for estimation of insulation thickness for condensation control or personnel protection has been investigated. Both horizontal pipe and vertical wall configuration are included. Design parameters are pipe diameter or, height of the wall, thermal conductivity, emissivity, and operating temperatures. The results Indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient. Adequate revision of specifications or standards has been also suggested.

  • PDF

The Analysis of Heat Transfer through the Multi-layered Wall of the Insulating Package

  • Choi, Seung-Jin
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • Thermal insulation is used in a variety of applications to protect temperature sensitive products from thermal damage. Several factors affect the performance of insulation packages. Among these factors, the thermal resistance of the insulating wall is the most important factor to determine the performance of the insulating package. In many cases, insulating wall consists of multi-layered structure and the heat transfer through this structure is a very complex process. In this study, an one-dimensional mathematical model, which includes all of the heat transfer principles covering conduction, convection and radiation in multi-layered structure, were developed. Based on this model, several heat transfer phenomena occurred in the air space between the layer of the insulating wall were investigated. From the simulation results, it was observed that the heat transfer through the air space between the layer were dominated by conduction and radiation and the low emissivity of the surface of each solid layer of the wall can dramatically increase the thermal resistance of the wall. For practical use, an equation was derived for the calculation of the thermal resistance of a multi-layered wall.

  • PDF

Flame Characteristics on Wall Recess Type Ceramic Combustor for Low Pollutants (Wall Recess형 저공해 세라믹 연소기의 화염특성)

  • 전영남;채재우
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.131-139
    • /
    • 1996
  • The developent of ceramic combustor is being increased beca- use of the excellent physical properties of ceramic material, that is, high-resistant strength, high emissivity power and high corrosin-resistance. Ceramic combustor has been interested in the application of ultra-lean combustion for low NO$_{x}$ emission and gaseuos waste incineration with good combustion. This experimental study was conducted to investigate the combustion and emission characteristics of wall recess type ceramic combustor with equivalence ratio, mixture flow velocity and wall recess depth as parameters. The results in this study are as follows: 1. Wall recess played a important role to extend flame stability region. 2. The peak temperature of gas was peoportional to equivalence ratio, mixture flow velocity and wall recess depth. 3. The static pressure of mixing chamber and inlet temperature depended on the position of flame zone. 4. NO reduction was achieved by lean mixture without lower combustibility.y.

  • PDF

A study on the wsggm-based spectral modeling of radiation properties of water vapor (회체가스중합법에 의한 수증기의 파장별 복사물성치 모델에 관한 연구)

  • Kim, Uk-Jung;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3371-3380
    • /
    • 1996
  • Low resolution spectral modeling of water vapor is carried out by applying the weighted-sum-of-gray-gases model (WSGGM) to a narrow band. For a given narrow band, focus is placed on proper modeling of gray gas absorption coefficients vs. temeprature relation used for any solution methods for the Radiative Transfer Equation(RTE). Comparison between the modeled emissivity and the "true" emissivity obtained from a high temperatue statistical narrow band parameters is made ofr the total spectrum as well as for a few typical narrow bands. Application of the model to nonuniform gas layers is also made. Low resolution spectral intensities at the boundary are obtained for uniform, parabolic and boundary layer type temeprature profiles using the obtained for uniform, parabolic and boundary layer type temperature profiles using the obtained WSGGM's with 9 gray gases. The results are compared with the narrow band spectral intensities as obtained by a narrow band model-based code with the Curtis-Godson approximation. Good agreement is found between them. Local heat source strength and total wall heat flux are also compared for the cases of Kim et al, which again gives promising agreement.