• Title/Summary/Keyword: Wall Design

Search Result 2,994, Processing Time 0.026 seconds

Seismic and Blast Design of Industrial Concrete Structures with Precast Intermediate Shear Wall System (프리캐스트 중간전단벽 시스템이 사용된 콘크리트 산업 시설물의 내진 및 방폭설계)

  • Lee, Won-Jun;Kim, Min-Su;Kim, Seon-hoon;Lee, Deuckhang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.93-101
    • /
    • 2024
  • Code-compliant seismic design should be essentially applied to realize the so-called emulative performance of precast concrete (PC) lateral force-resisting systems, and this study developed simple procedures to design precast industrial buildings with intermediate precast bearing wall systems considering both the effect of seismic and blast loads. Seismic design provisions specified in ACI 318 and ASCE 7 can be directly adopted, for which the so-called 1.5Sy condition is addressed in PC wall-to-wall and wall-to-base connections. Various coupling options were considered and addressed in the seismic design of wall-to-wall connections for the longitudinal and transverse design directions to secure optimized performance and better economic feasibility. On the other hand, two possible methods were adopted in blast analysis: 1) Equivalent static analysis (ESA) based on the simplified graphic method and 2) Incremental dynamic time-history analysis (IDTHA). The ESA is physically austere to use in practice for a typical industrial PC-bearing wall system. Still, it showed an overestimating trend in terms of the lateral deformation. The coupling action between precast wall segments appears to be inevitably required due to substantially large blast loads compared to seismic loads with increasing blast risk levels. Even with the coupled-precast shear walls, the design outcome obtained from the ESA method might not be entirely satisfactory to the drift criteria presented by the ASCE Blast Design Manual. This drawback can be overcome by addressing the IDTHA method, where all the design criteria were fully satisfied with precast shear walls' non-coupling and group-coupling strength, where each individual or grouped shear fence was designed to possess 1.5Sy for the seismic design.

CMF Design Trends of Wall-covering for Interior Showrooms: A Case Study of New York D&D Building in 2019 (인테리어 쇼룸에 전시된 벽지의 CMF 디자인 경향 연구 -2019년 뉴욕 D&D Building 사례를 중심으로 -)

  • Lee, Joonhan;Kim, Sun Mee
    • Journal of Fashion Business
    • /
    • v.23 no.4
    • /
    • pp.1-12
    • /
    • 2019
  • The study investigated trends in wall-covering displays in interior design stores. Although studies reported design trends at well-known exhibitions overseas such as Heimtextil and Maison objet, many different cases present actual realistic design flows. This study analyzes the actual market flow rather than design as an exhibition concept, and presents the interior CMF trends in 2019. The CMF design of wall-covering displayed in New York D&D Building in 2019 can be summarized as follows: W was the most frequently seen show-window, but like R, which is a strong color, it is also used to convey surrealistic images. The store entrance was designed to attract consumers' attention inside, and was constructed to reflect the actual trend. In the 2019 New York market, the wall-covering of Gray and YR were displayed through the shop entrance to suggest substantial sales. In addition, the demand for gold metallic wall-covering is significant as gold was strong in many forms. This study represents a valuable resource to identify trends in wall-covering from 2017 to 2019 compared with previous studies. This study represents a valuable foundation for a wide range of topics related to the use of wall-covering for interior decoration.

Optimal Design of Slim TV Wall Mount Arm with Cantilever Structure (외팔보 구조의 슬림형 TV 월마운트암의 최적설계)

  • Jang, Woon-Geun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.4
    • /
    • pp.167-172
    • /
    • 2011
  • This paper investigated optimal design for slim wall mount arm for flat TV. Recently the number of flat TV sets in use went on increasing in TV market. As the flat TV sets are getting common, consumers came to need another requirements like aesthetic factor besides display performances. As the new TV sets tend to be slimmer due to aesthetic design, Wall mount also requires to be slimmer for aesthetic balance. Slim structures, however, are vulnerable to structural rigidity. In this study, slim wall mount arm has been designed by 3D CAD and DOE (Design of Experiments) and finite element analysis for optimal structural design were carried out to determine the design variables for minimize working stress of wall mount arm. Finally two optimal design conditions were selected through DOE and FEM and one of those was chosen under constraint of minimizing blanking developed length.

Optimum Design of Retaining Wall with Seismic Constraints (내진제약조건(耐震制約條件)을 갖는 옹벽(擁壁)의 최적설계(最適設計))

  • Kim, Kee-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.2
    • /
    • pp.95-102
    • /
    • 2003
  • In this paper, optimum design is considered over the retaining wall with seismic constraints. The sequential linear programming method(SLP) is used as a rational approach to this optimum design. To make a comparison between the seismic design and the normal design, retaining wall with 4~7m height were adopted. It is shown that the seismic design is more expensive (over 30%) than the normal design for the construction cost.

  • PDF

Capacity design considerations for RC frame-wall structures

  • Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.391-410
    • /
    • 2010
  • There are several important considerations that need to be made in the capacity design of RC frame-wall structures. Capacity design forces will be affected by material overstrength, higher mode effects and secondary loadpaths associated with the 3-dimensional structural response. In this paper, the main issues are identified and different means of predicting capacity design forces are reviewed. In order to ensure that RC frame-wall structures perform well it is explained that the prediction of the peak shears and moments that develop in the walls is particularly important and unfortunately very challenging. Through examination of a number of case study structures it is shown that there are a number of serious limitations with capacity design procedures included in current codes. The basis and potential of alternative capacity design procedures available in the literature is reviewed, and a new simplified capacity design possibility is proposed. Comparison with the results of 200 NLTH analyses of frame-wall structures ranging from 4 to 20 storeys suggest that the new method is able to predict wall base shears and mid-height wall moments reliably. However, efforts are also made to highlight the uncertainty with capacity design procedures and emphasise the need for future research on the subject.

The Research for Making Flexible Use of Vertical Garden in Architectural Space - The activated use design for architectural outside walls' space - (건축공간에서의 Vertical Garden의 활용에 관한 연구 - 건축물 외벽면 디자인 활용방법 -)

  • Liu, Xiao-Mei;Kim, Eun-Jung;Hong, Kwan-Seon
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.4
    • /
    • pp.12-22
    • /
    • 2014
  • In this study, the basic information and study design characteristics of the Building Outer Wall Vertical Greening were analyzed. Recorded according to the type of research and analysis, through numerical statistics. Building Outer Wall Vertical Greening design the most appropriate and effective ways to present and try to guidelines. The scope of the research of Building Outer Wall Vertical Greening(2001-2013) was selected the most representative examples. Theory and statistical data analysis and case study research was conducted. The main academic monographs, Library Literature, specializing in design magazines and excerpts from the 28 cases analyzed specifically. Building Outer Wall Vertical Greening should be designed synthetically geographical features of the project, existing material, to consider the value of the building. Architect must be designed depending on accident and comprehensive expertise for architectural design of Building Outer Wall Vertical Greening. Building Outer Wall Vertical Greening requires the professional and comprehensive design approach depending on support of the government and people. However, purpose of use, plant, color, Formative expression, culture, locality, maintenance is properly applied in the design process is not easy.

Application of Building using Optimal Design Technique of Irregular Wall (일반 건축물의 이형벽체 최적설계기법 적용사례)

  • Han, Kyung-Soo;Bang, Jung-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.86-87
    • /
    • 2014
  • Recently, construction project has greatly increased the needs for cost savings due to excessive competition and economic recession. The purpose of this study is to introduce application of building using optimal design technique for improving constructability and economic efficiency of structural wall. As a results, design results of irregular wall show about 15% reduction of the longitudinal bar compared to single walls and ultimately improve constructability.

  • PDF

Development of Design Charts to Estimate Member Forces on Basement Wall (지하벽체의 최대부재력 산정을 위한 차트의 개발)

  • Kim, Young-Chan;Kim, Ju-Bum
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.104-110
    • /
    • 2012
  • It is a common practice to design basement walls acting as a one-way slab or plate with idealized boundary conditions, resulting in potentially inefficient design. The walls are often supported by buttress columns and side walls in the vertical direction, thereby acting as a two-way slab. In this study, structural behavior of single-story, three-span basement wall subjected to lateral soil pressure was investigated. Three dimensional finite element analyses were conducted to determine the force distribution on the wall. Based on the numerical studies, a regression analysis was carried out to determine the design values of moments in vertical and horizontal directions as well as shear forces on the wall and design charts are developed. The proposed design method with accompanying design charts would enable practicing engineers to estimate member forces on the wall for preliminary design purpose without resorting to finite element analysis. Numerical examples demonstrated the applicability of the proposed method.

The influences of equivalent viscous damping ratio determination on direct displacement-based design of un-bonded post-tensioned (UPT) concrete wall systems

  • Anqi, Gu;Shao-Dong, Shen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.627-637
    • /
    • 2022
  • Recent years, direct displacement-based design (DDBD) procedure is proposed for the design of un-bonded posttensioned (UPT) concrete wall systems. In the DDBD procedure, the determination of the equivalent viscous damping (EVD) ratio is critical since it would influence the strength demand of the UPT wall systems. Nevertheless, the influence of EVD ratio determination of the UPT wall systems were not thoroughly evaluated. This study was aimed to investigate the influence of different EVD ratio determinations on the DDBD procedure of UPT wall systems. Case study structures with four, twelve and twenty storeys have been designed with DDBD procedure considering different EVD ratio determinations. Nonlinear time history analysis was performed to validate the design results of those UPT wall systems. And the simulation results showed that the global responses of the case study structures were influenced by the EVD ratio determination.

Structural Design of Coupled RC Structural Wall Considering Plastic Behavior (소성거동을 고려한 병렬 RC 구조벽체시스템의 설계)

  • Yu, Seung-Yoon;Eom, Tae-Sung;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.351-361
    • /
    • 2017
  • Reinforced concrete(RC) structural walls are major lateral load-resisting structural member in building structures. Generally these RC structural walls are coupled with each other by the coupling beams and slabs, and therefore they behave as RC coupled structural wall system. In the design of these coupled structural wall systems, member forces are calculated using elastic structural analysis. These elastic analysis methodologies for the design of coupled structural wall system was not reasonable because it can not consider their ultimate behavior and assure economic feasibility. Performance based design and moment redistribution method to solve these problems is regarded as a reasonable alternative design method for RC coupled structural wall system. However, it is not verified under various design parameters. In this study, nonlinear analysis of RC coupled structural wall system was performed according to various design parameters such as reinforcement ratio, ultimate concrete strain and wall height. Based on analysis results, design considerations for coupled RC structural wall system was proposed.