• 제목/요약/키워드: Walking Assist Device

검색결과 17건 처리시간 0.026초

보행보조로봇을 위한 다중 생체/역학 센서의 신호 분석 및 사용자 의도 감지 (Detection of Implicit Walking Intention for Walking-assistant Robot Based on Analysis of Bio/Kinesthetic Sensor Signals)

  • 장은혜;전병태;지수영;이재연;조영조
    • 로봇학회논문지
    • /
    • 제5권4호
    • /
    • pp.294-301
    • /
    • 2010
  • In order to produce a convenient robot for the aged and the lower limb disabled, it is needed for the research detecting implicit walking intention and controlling robot by a user's intention. In this study, we developed sensor module system to control the walking- assist robot using FSR sensor and tilt sensor, and analyzed the signals being acquired from two sensors. The sensor module system consisted of the assist device control unit, communication unit by wire/wireless, information collection unit, information operation unit, and information processing PC which handles integrated processing of assist device control. The FSR sensors attached user's the palm and the soles of foot are sensing force/pressure signals from these areas and are used for detecting the walking intention and states. The tilt sensor acquires roll and pitch signal from area of vertebrae lumbales and reflects the pose of the upper limb. We could recognize the more detailed user's walking intention such as 'start walking', 'start of right or left foot forward', and 'stop walking' by the combination of FSR and tilt signals can recognize.

Development of walking assist system for the people with lower limb-disability

  • Kim, Seok-Hwan;Izumi, Keisuke;Koujina, Yasuhiro;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1495-1499
    • /
    • 2003
  • There is some equipment that helps user to exercise and to walk. But almost all equipments require some physical strength of their muscles. So we developed a system that could assist walking action of the people with lower-limb disability. The system called as walking stand adopted the balancing mechanism which assures the stable walking, and the 4 link-based mechanism that had 2 degrees of freedom on each leg. The walking stand uses four motors and has two sets of the special link-structure to simulate the human walking mechanism. With our system, even serious disabled with lower-limb disability may enjoy walking rehabilitation. And by adjusting the power, it can be used as the walking assistant mechanism instead of conventional wheelchairs. Experiments showed that our walking stand is applicable to the rehabilitation and also to the mobile device in our daily life for those people who do not have enough physical ability to walk by themselves.

  • PDF

Development of advanced walking assist system employing stiffness sensor

  • Kim, Seok-Hwan;Shunji, Moromugi;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1638-1641
    • /
    • 2004
  • Many walking stands, and assisting tools have been developed for the people with low-limb disability to prevent diseases from bedridden state and to help them walk again. But many of those equipments require user to have some physical strength or balancing ability. In our last research, we developed walking assist system for the people with lower-limb disability. With the system, user can be assisted by actuators, and do not have to worry about falling down. The system adapted the unique closed links structure with four servomotors, three PICs as controller, and four limit switches as HMI (human man interface). We confirmed the adaptability of the system by the experiment. In this research, Muscle Stiffness Sensor was tested as the advanced HMI for walking assist system, and confirmed the adaptability by the experiment. As Muscle Stiffness Sensor can attain the muscle activity, user can interface with any device he want to control. Experimental result with Muscle Stiffness sonsor showed that user could easily control the walking assist system as his will, just by changing his muscle strength.

  • PDF

재활치료를 위한 능동형 기립-보행 보조기구 설계 방법 (Design Method of Active Standing-to-Walking Assistive Device for Rehabilitation Therapy)

  • 김성준;김세진;강윤모;전유신;안채헌
    • 한국산업융합학회 논문집
    • /
    • 제26권6_3호
    • /
    • pp.1315-1323
    • /
    • 2023
  • Rehabilitation assistive devices not only assist the rehabilitation therapy and daily life of the disabled and the elderly, but also assist the labor of their caregivers, so various functions are required to improve their quality of life. In this study, a design method considering its practicality is introduced for an active rehabilitation assistive device that can perform both standing and walking assistance by driving various actuators. For this purpose, the force required to assist standing was calculated using statics with the body segmentation method. Also, the overturning stability of the device was verified for various physical conditions and postures. The actuator in the active rehabilitation assistive device was operated by a patient using a graphical user interface in an embedded computer and a touch panel for easy usage. The detailed design was performed for implementation through the help of 3D-CAD and the finite element analysis, and a prototype was produced. Finally, it was proven that the design goal was satisfied by experimental validation.

하반신 마비환자의 보행보조시스템 제어를 위한 저항 센서 슈트 개발 (Development of FSR Sensor Suits Controlling Walking Assist System for Paraplegic Patients)

  • 장은혜;지수영;이재연;조영조;전병태
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권4호
    • /
    • pp.269-274
    • /
    • 2010
  • The purpose of this study was to develop the FSR sensor suit that controls walking assist device for paraplegic patients. The FSR sensor suit was to detect user's intent and patterns for walking by measuring pressure on the palm and the sole of user's foot. It consisted of four modules: sensing pressure from palm, changing modes and detecting pressure on the palm/at the wrist, sensing pressure from the soles of user's foot, and host module that transmit FSR data obtained from sensing modules to PC. Sensing modules were connected to sensing pads which detect analog signals obtained from the palm or the sole of foot. These collect signals from the target regions, convert analog signals into digital signals, and transmit the final signals to host module via zigbee modules. Finally, host modules transmit the signals to host PC via zigbee modules. The study findings showed that forces measured at the palm when using a stick reflected user's intent to walk and forces at the sole of the user's foot revealed signals detecting walking state.

한국, 미국, 유럽의 휠체어동력보조장치 규제 현황 (Regulations on Wheelchair Power Assist Add-ons in Korea, Europe and United States)

  • 최기원;이석민;문인혁;박상수
    • 문화기술의 융합
    • /
    • 제9권2호
    • /
    • pp.525-531
    • /
    • 2023
  • 초고령사회에 접어 들고 있는 한국은 자립 보행이 어려운 노인 환자의 급증이 예상되며 보행 장애인의 삶의 질 향상을 위하여 다양한 기능의 휠체어 제품의 개발이 필요하다. 최근 수동 휠체어에 장착하여 추진 동력을 제공하는 휠체어 동력 보조 장치가 개발되어 국내 및 세계 시장에 진출하고 있다. 본 연구에서는 한국, 미국, 유럽에서 휠체어 동력 보조장치 제품들이 의료기기 인증을 받는 과정을 비교 분석하였다. 한국은 2등급 의료기기 인증과정이 2021년 개발되었으며, 미국 FDA에서는 기존의 전동휠체어와 같은 Class 2에 해당하여 510k 인증과정을 통과해야 한다. 유럽의 경우에는 특이하게 Class I으로 규정되어 상대적으로 쉬운 자가적합선언을 통하여 CE 마크를 부착할 수 있다. 유럽의 새로운 의료기기 규정인 MDR인증의 어려움을 겪고 있는 한국의 의료기기산업계에서는 상대적으로 쉬운 휠체어 동력보조장치 제품의 세계 시장 진출에 관심을 가져야 할 것이다.

고령자 맞춤형 보행보조서비스 설계를 위한 심리측정 분석 (Psychometric Analysis for Designing Elderly Customized Walking Assist Device)

  • 김정화;장정아;최기주
    • 한국ITS학회 논문지
    • /
    • 제15권1호
    • /
    • pp.39-51
    • /
    • 2016
  • 본 연구는 고령자의 스마트폰 이용률 증가에 따라, 고령자가 활용이 가능한 ICT(정보통신기술) 기반의 맞춤형 보행보조기술 개발을 제시하고 이에 대한 사용자 니즈(needs)를 규명하고자 하였다. 맞춤형 보행보조서비스의 형태는 햅틱(진동 및 촉각정보)을 통한 보행안내지원 서비스와 자동 및 셀프 SOS 시스템, 그리고 접근차량의 정보알람 서비스가 포함된 웨어러블(Wearable) 보행안내 보조 장치를 기반으로 한다. 이러한 서비스의 실효성을 검토하기 위하여 189명의 잠재적 고령자와 고령자를 대상으로 그들이 가지는 보행에 관한 심리적 태도 및 각 서비스에 대한 선호도, 그리고 보행안내 보조 장치에 대한 WTP (willingness to pay)를 조사 및 분석하였다. 또한 조사된 변수를 통해 요인분석(Factor analysis)을 수행하였으며 여기서 도출된 요인간 상관관계 파악을 위해 경로모형 (path model)을 추정하였다. 분석된 결과를 통해 연령대에 적합한 보행보조 장치의 맞춤형 서비스의 방향을 제시하였으며, 이는 제품화된 기술에 대한 활용범위를 증대시키고 궁극적으로 고령자의 보행 안전성을 향상시킬 수 있을 것으로 판단된다.

The Feasibility Study of Sit-to-stand and Stand-to-sit Assistive Chair for Elderly

  • Seonggwang Yu;Seungmuk Lee;Minsoo Kim;Dae-Sung Park
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권4호
    • /
    • pp.591-597
    • /
    • 2022
  • Objective: The sitting and standing are motions that correspond to the previous stage of rehabilitation to go to walking for daily life. The purpose of this study was to measure task times, path length of the center of pressure (COP) and activity on the vastus femoris muscle using surface electromyography (EMG) when standing up and sitting down. Design: One group cross-sectional design Methods: Fifteen elderly subjects (8 male, 7 female) participated. All subjects were tested three times according to four assist levels (non-assist, lower, middle, and maximal assist) using adjusts the length of spring at sit-to-stand and stand to sit on a chair. The task duration, and COP path length were recorded for the balance function on the Nintendo Wii fit board. The activity of the rectus femoris muscle was recorded on both legs using surface EMG. Results: The results showed that the task duration of the sit-to-stand and stand-to-sit were significantly increased compared to without assist (p<.05). The activation of the rectus femoris muscle more significantly decreased compared to without assistance at standing or sitting (p<.05). Conclusions: The assistive chair showed less quadriceps muscle activation during sitting and standing compared to without assistance. We suggest that our assist-standing chair can help with activities of daily living such as standing up and sitting down movements adjusting the spring length for control assist level by safely.