• Title/Summary/Keyword: Wald statistics

Search Result 62, Processing Time 0.021 seconds

Interval Estimation of Population Proportion in a Double Sampling Scheme (이중표본에서 모비율의 구간추정)

  • Lee, Seung-Chun;Choi, Byong-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1289-1300
    • /
    • 2009
  • The double sampling scheme is effective in reducing the sampling cost. However, the doubly sampled data is contaminated by two types of error, namely false-positive and false-negative errors. These would make the statistical analysis more difficult, and it would require more sophisticate analysis tools. For instance, the Wald method for the interval estimation of a proportion would not work well. In fact, it is well known that the Wald confidence interval behaves very poorly in many sampling schemes. In this note, the property of the Wald interval is investigated in terms of the coverage probability and the expected width. An alternative confidence interval based on the Agresti-Coull's approach is recommended.

ON TESTING THE EQUALITY OF THE COEFFICIENTS OF VARIATION IN TWO INVERSE GAUSSIAN POPULATIONS

  • Choi, Byung-Jin;Kim, Kee-Young
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.2
    • /
    • pp.93-101
    • /
    • 2003
  • This paper deals with testing the equality of the coefficients of variation in two inverse Gaussian populations. The likelihood ratio, Lagrange-multiplier and Wald tests are presented. Monte-Carlo simulations are performed to compare the powers of these tests. In a simulation study, the likelihood ratio test appears to be consistently more powerful than the Lagrange-multiplier and Wald tests when sample size is small. The powers of all the tests tend to be similar when sample size increases.

Comparison between homogeneity test statistics for panel AR(1) model (패널 1차 자기회귀과정들의 동질성 검정 통계량 비교)

  • Lee, Sung Duck;Kim, Sun Woo;Jo, Na Rae
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.123-132
    • /
    • 2016
  • We can achieve the principle of parsimony and efficiency if homogeneity for panel time series model is satisfied. We suggest a Rao test statistic and a Wald test statistic for the test of homogeneity for panel AR(1) and derived the limit distribution. We performed a simulation to examine statistics with the same chisquare distribution when number of the individual is small and in common with large. We also simulated to compare the empirical power of the statistics in a small panel. In application, we fit panel AR(1) model using regional monthly economical active population data and test homogeneity for panel AR(1). It is satisfied homogeneity, so it could be fitted AR(1) using the sample mean at the time point. We also compare the power of prediction between each individual and pooled model.

Rao-Wald Test for Variance Ratios of a General Linear Model

  • Li, Seung-Chun;Huh, Moon-Yul
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.11-24
    • /
    • 1999
  • In this paper we propose a method to test $\textit{H}$:$\rho_i$=$\gamma_i$ for 1$\leq$$\textit{i}$$\leq$$\ell$ against $\textit{K}$:$\rho_i$$\neq$$\gamma_i$ for some iin k-variance component random or mixed linear model where $\rho$i denotes the ratio of the i-th variance component to the error variance and $\ell$$\leq$K. The test which we call Rao-Wald test is exact and does not depend upon nuisance parameters. From a numerical study of the power performance of the test of the interaction effect for the case of a two-way random model Rao-Wald test was seen to be quite comparable to the locally best invariant (LBI) test when the nuisance parameters of the LBI test are assumed known. When the nuisance parameters of the LBI test are replaced by maximum likelihood estimators Rao-Wald test outperformed the LBI test.

  • PDF

Goodness of Fit and Independence Tests for Clustered Sample Data (집락표본자료에 대한 적합도검정과 독립성검정)

  • 南宮 坪;崔秉洙;李柱祿
    • The Korean Journal of Applied Statistics
    • /
    • v.2 no.2
    • /
    • pp.79-89
    • /
    • 1989
  • Modified Pearson $X^2$ statistic is concerned. Moreover the four statistics(Pearson, Wald, modified sample design effects and reduction factor) are compared in one-stage sampling situation. In case of categorical of fit and independence tests for sample data above, it is shown that there is a significant behavior between Pearson $X^2$ and Wald statistic, but minor difference in modified statistics by simulation methods.

  • PDF

Interval Estimation for a Binomial Proportion Based on Weighted Polya Posterior (이항 비율의 가중 POLYA POSTERIOR 구간추정)

  • Lee Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.607-615
    • /
    • 2005
  • Recently the interval estimation of a binomial proportion is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the will-known Wald confidence interval. Various alternatives have been proposed. Among them, Agresti-Coull confidence interval has been recommended by Brown et al. (2001) with other confidence intervals for large sample, say n $\ge$ 40. On the other hand, a noninformative Bayesian approach called Polya posterior often produces statistics with good frequentist's properties. In this note, an interval estimator is developed using weighted Polya posterior. The resulting interval estimator is essentially the Agresti-Coull confidence interval with some improved features. It is shown that the weighted Polys posterior produce an effective interval estimator for small sample size and a severely skewed binomial distribution.

New Wald Test Compared with Chen and Fienberg's for Testing Independence in Incomplete Contingency Tables

  • Kang, Shin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.1
    • /
    • pp.137-144
    • /
    • 2005
  • In $I{\times}J$ incomplete contingency tables, the test of independence proposed by Chen and Fienberg(1974) uses $I{\times}J-1$ instead of (I-1)(J-1) degrees of freedom without providing much of an increase in the value of the test statistic. For these reasons, Chen and Fienberg tests are expected to have less power. New Wald test statistic related to the part of Chen and Fienberg test statistic is proposed using delta method. These two tests are compared through Monte Carlo studies.

  • PDF

Testing for Grouped Heteroscedasticity in Linear Regression Model

  • Song, Seuck Heun;Choi, Moon Kyung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.475-484
    • /
    • 2004
  • This paper consider the testing problem of grouped heteroscedasticity in the linear regression model. We provide the Lagrange Multiplier(LM), Wald, Likelihood Ratio (LR) test statistis for testing of grouped heteroscedasticity. Monte Carlo experiments are conducted to study the performance of these tests.

On Prediction Intervals for Binomial Data (이항자료에 대한 예측구간)

  • Ryu, Jea-Bok
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.943-952
    • /
    • 2013
  • Wald, Agresti-Coull, Jeffreys, and Bayes-Laplace methods are commonly used for confidence interval of binomial proportion are applied for prediction intervals. We used coverage probability, mean coverage probability, root mean squared error, and mean expected width for numerical comparisons. From the comparisons, we found that Wald is not proper as for confidence interval and Agresti-Coull is too conservative to differ from confidence interval. However, Jeffrey and Bayes-Laplace are good for prediction interval and Jeffrey is especially desirable as for confidence interval.

On prediction intervals for binomial data (이항자료에 대한 예측구간)

  • Ryu, Jea-Bok
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.579-588
    • /
    • 2021
  • Wald, Agresti-Coull, Jeffreys, and Bayes-Laplace methods are commonly used for confidence interval of binomial proportion are applied for prediction intervals. We used coverage probability, mean coverage probability, root mean squared error, and mean expected width for numerical comparisons. From the comparisons, we found that Wald is not proper as for confidence interval and Agresti-Coull is too conservative to differ from confidence interval. However, Jeffrey and Bayes-Laplace are good for prediction interval and Jeffrey is especially desirable as for confidence interval.