• Title/Summary/Keyword: Wakes

Search Result 162, Processing Time 0.026 seconds

Aeroelastic Behaviors of Self-anchored Suspension Bridge with Lateral Sag of Main Cable(II) - Focused on the Behavior of Tower - (횡방향 새그를 가진 자정식 현수교의 공탄성 거동(II) - 주탑의 거동을 중심으로 -)

  • Kwon, Soon Duck;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.269-275
    • /
    • 1997
  • Wind tunnel test results and their interpretations, which were performed to study the aerodynamic stability of tower of self-anchored suspension bridge, are presented in this paper. Tower and full models were tested under smooth and turbulent flow conditions. In the case of the tower with inclined two columns, the vibration due to wakes were occurred at wide velocity zone because the wakes with various frequencies were generated by inclined upstream column. It has to be emphasized that the vibration characteristics of the tower in the self-anchored suspension bridge may be very sensitive to the longitudinal boundary conditions of the girder at the supports. Because of the two natural frequency of the tower, out-of-plane bending and torsional, were not well separated, coupled motions were observed in a wide range of wind velocity. The effectiveness of corner cut, countermeasure to reduce the tower vibrations, was also studied. It has been found that 1:10, comer cut size to column width, may be the most effective ratio for reducing the vibrations.

  • PDF

A Sensor nodes' Residual Energy based Wake-up Control Mechanism in Wireless Sensor Networks (무선 센서 네트워크에서 센서 노드의 잔여 에너지 기반 Wake-up 제어 메커니즘)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.187-192
    • /
    • 2017
  • In dense deployments of sensor nodes in Wireless Sensor Networks, the MAC protocol has challenges to solve problems such as reducing delivery delay and reducing energy consumption. To solve these problems lots of protocols are suggested. This paper proposed a sensor nodes' residual energy based wake-up control mechanism, in which each node decides whether it wakes up or stays in sleep mode to save energy consumption by reducing unnecessary idle listening. The main idea of the wake-up control mechanism is to save node's energy consumption. The proposed wake-up control mechanism is based on the RI-MAC protocol, which is one of the receiver-initiated MAC protocols. A receiver node in the proposed mechanism periodically wakes up and broadcasts a beacon signal based on the energy status of the node. A receiver node also adjusts wake-up period based on the traffics. Results have shown that the proposed MAC protocol outperformed RI-MAC protocol in the terms of energy consumption.

Wake Comparison between Model and Full Scale Ships Using CFD (CFD를 이용한 모형선과 실선 스케일의 반류 비교)

  • Yang, Hae-Uk;Kim, Byoung-Nam;Yoo, Jae-Hoon;Kim, Wu-Joan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.150-162
    • /
    • 2010
  • Assessment of hydrodynamic performance of a ship hull has been focused on a model ship rather than a full-scale ship. In order to design the propeller of a ship, model-scale wake is often extended to full-scale based upon an empirical method or designer's experience, since wake measurement data for a full-scale ship is very rare. Recently modern CFD tools made some success in reproducing wake field of a model ship, which implicates that there are some possibilities of the accurate prediction of full-scale wakes. In this paper firstly the evaluation of model-scale wake obtained by Fluent package was performed. It was found that CFD calculation with the Reynolds-stress model (RSM) provided much better agreement with wake measurement in the towing tank than with the realizable k-$\varepsilon$ model (RKE). In the next full-scale wake was calculated using the same package to find out the difference between model and full-scale wakes. Three hull forms of KLNG, KCS, KVLCC2 having measurement data open for the public, were chosen for the comparison of resistance, form factor, and propeller plane wake between model ships and full-scale ships.

Computing turbulent far-wake development behind a wind turbine with and without swirl

  • Hu, Yingying;Parameswaran, Siva;Tan, Jiannan;Dharmarathne, Suranga;Marathe, Neha;Chen, Zixi;Grife, Ronald;Swift, Andrew
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • Modeling swirling wakes is of considerable interest to wind farm designers. The present work is an attempt to develop a computational tool to understand free, far-wake development behind a single rotating wind turbine. Besides the standard momentum and continuity equations from the boundary layer theory in two dimensions, an additional equation for the conservation of angular momentum is introduced to study axisymmetric swirl effects on wake growth. Turbulence is simulated with two options: the standard ${\kappa}-{\varepsilon}$ model and the Reynolds Stress transport model. A finite volume method is used to discretize the governing equations for mean flow and turbulence quantities. A marching algorithm of expanding grids is employed to enclose the growing far-wake and to solve the equations implicitly at every axial step. Axisymmetric far-wakes with/without swirl are studied at different Reynolds numbers and swirl numbers. Wake characteristics such as wake width, half radius, velocity profiles and pressure profiles are computed. Compared with the results obtained under similar flow conditions using the computational software, FLUENT, this far-wake model shows simplicity with acceptable accuracy, covering large wake regions in far-wake study.

An Efficient Neighbor Discovery Method for Cooperative Video Surveillance Services in Internet of Vehicles (차량 인터넷에서 협업 비디오 감시 서비스를 위한 효율적인 이웃 발견 방법)

  • Park, Taekeun;Lee, Suk-Kyoon
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.97-109
    • /
    • 2016
  • The rapid deployment of millions of mobile sensors and smart devices has resulted in high demand for opportunistic encounter-based networking. For the cooperative video surveillance of dashboard cameras in nearby vehicles, a fast and energy-efficient asynchronous neighbor discovery protocol is indispensable because a dashboard camera is an energy-hungry device after the vehicle's engine has turned off. In the existing asynchronous neighbor discovery protocols, all nodes always try to discover all neighbors. However, a dashboard camera needs to discover nearby dashboard cameras when an event is detected. In this paper, we propose a fast and energy-efficient asynchronous neighbor discovery protocol, which enables nodes : 1) to have different roles in neighbor discovery, 2) to discover neighbors within a search range, and 3) to report promptly the exact discovery result. The proposed protocol has two modes: periodic wake-up mode and active discovery mode. A node begins with the periodic wake-up mode to be discovered by other nodes, switches to the active discovery mode on receiving a neighbor discovery request, and returns to the periodic wake-up mode when the active discovery mode finishes. In the periodic wake-up mode, a node wakes up at multiples of number ${\alpha}$, where ${\alpha}$ is determined by the node's remaining battery power. In the active discovery mode, a node wakes up for consecutive ${\gamma}$ slots. Then, the node operating in the active discovery mode can discover all neighbors waking up at multiples of ${\beta}$ for ${\beta}{\leq}{\gamma}$ within ${\gamma}$ time slots. Since the proposed protocol assigns one half of the duty cycle to each mode, it consumes equal to or less energy than the existing protocols. A performance comparison shows that the proposed protocol outperforms the existing protocols in terms of discovery latency and energy consumption, where the frequency of neighbor discovery requests by car accidents is not constantly high.

Self-Consciousness Information of Branching Minds (갈라진 두 마음의 자기의식 정보)

  • Kim, Myeong-Seok
    • Journal of Korean Philosophical Society
    • /
    • v.142
    • /
    • pp.27-50
    • /
    • 2017
  • When we lose our memories or when our self-identity becomes blurred, we may feel as if our mind has split into multiple minds. If someone makes another 'me' by copying my body and mind, how should two conscious 'I's change their credences? In this article, we present a new thought experiment that can be called the 'Two Adams Problem'. This thought experiment represents a piece of philosophical inquiry that speculates on the nature of self-consciousness information that 'I am awake now'. On Sunday evening, as soon as Adam falls asleep, the philosopher Roro makes another Adam by copying Adam's original body and mind. They sleep separately in another room. Within a minute, Roro throws a fair coin. If the coin lands heads up Roro wakes just one of the Adams up on Monday. If the coin lands tails up Roro wakes both Adams up. On Monday, at least one of the Adams will wake up. To what degree ought they believe that the outcome of the coin toss is heads? We will argue that the correct answer to this question is 1/2.

Analysis of Empirical Constant of Eddy Viscosity by k-ε and RNG k-ε Turbulence Model in Wake Simulation

  • Park, Il Heum;Cho, Young Jun;Lee, Jong Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.344-353
    • /
    • 2019
  • The wakes behind a square cylinder were simulated using two-equation turbulence models, $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. For comparisons between the model predictions and analytical solutions, we employed three skill assessments:, the correlation coefficient for the similarity of the wake shape, the error of maximum velocity difference (EMVD) of the accuracy of wake velocity, and the ratio of drag coefficient (RDC) for the flow patterns as in the authors' previous study. On the basis of the calculated results, we discussed the feasibility of each model for wake simulation and suggested a suitable value for an eddy viscosity related constant in each turbulence model. The $k-{\varepsilon}$ model underestimated the drag coefficient by over 40 %, and its performance was worse than that in the previous study with one-equation and mixing length models, resulting from the empirical constants in the ${\varepsilon}-equation$. In the RNG $k-{\varepsilon}$ model experiments, when an eddy viscosity related constant was six times higher than the suggested value, the model results were yielded good predictions compared with the analytical solutions. Then, the values of EMVD and RDC were 3.8 % and 3.2 %, respectively. The results of the turbulence model simulations indicated that the RNG $k-{\varepsilon}$ model results successfully represented wakes behind the square cylinder, and the mean error for all skill assessments was less than 4 %.

터보펌프용 1.4MW급 터빈의 전산유동해석

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.153-162
    • /
    • 2005
  • Through a preliminary design process, four design candidates for a 1.4MW class partial admission turbine have been chosen and the numerical analyses using a frozen rotor method are applied to estimate their performance. Each flow analysis result was compared with others and the optimum design was selected. Flow characteristics in the passages and some types of losses induced by shocks and wakes were found from calculation results. A new rotor blade was redesigned based on these calculations and this result is compared with previous one through flow analysis.

  • PDF

Comparison of Turbulence Models for the Prediction of Wakes around VLCC Hull Forms

  • Kim, Wu-Joan;Kim, Do-Hyun;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.27-48
    • /
    • 2001
  • Turbulent flow calculations are performed for the two modern practical VLCCs with the sable forebody and the slightly different afterbody, i.e. KVLCC and KVLCC2. Three $\textsc{k}-\varepsilon$ turbulence models are tested to investigate the differences caused by the turbulence models. The calculated results around the two VLCC hull forms using O-O grid topology and profile-fitted surface meshes are compared to the measured data from towing tank experiment. The realizable $\textsc{k}-\varepsilon$model provided realistic wake distribution with hook-like shape, while the standard and RNG-based $\textsc{k}-\varepsilon$models failed. It is very encouraging to see that the CFD with relatively simple turbulence closure can tell the difference quantitatively as well as qualitatively for the two hull forms with stern frameline modification.

  • PDF

Large Eddy Simulation of Boundary Layer Transition on the Turbine Blade (LES를 이용한 축류 터빈 경계층 천이에 대한 수치해석)

  • Jin, Byung-Ju;Park, No-Ma;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.392-397
    • /
    • 2001
  • A numerical study is performed to investigate the interaction between subsonic axial turbine blade boundary layer and periodically oncoming rotor induced wakes. An implicit scheme for solving the compressible Navier-Stokes equation is developed, which adopts a 4th-order compact difference for spatial discretiztion, a 2nd order Crank-Nicolson scheme for temporal discretization and the dynamic eddy viscosity model as the subgrid scale model. The efficiency and the accuracy of the proposed method are verified by applying to some benchmark problems such as laminar cylinder flow, laminar airfoil cascade flow and a transitional flat plate boundary layer flow. Computational results show good agreements with previous experimental and numerical results. Finally, flow through a stator cascade is simulated at $Re = 7.5{\times}10^5$ without free-stream turbulence intensity. The velocity fields and skin friction coefficients in the transitional region show similar trends with previous boundary layer natural transition.

  • PDF