• Title/Summary/Keyword: Wake characteristics

검색결과 521건 처리시간 0.026초

PIV 계측에 의한 실린더 근접후류에서 2차 와류의 특성 연구 (A Study on Characteristics of Secondary Vortices in the Near Wake of a Circular Cylinder by PIV Measurement)

  • 성재용;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.404-409
    • /
    • 2000
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder where the Taylor hypothesis does not hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV. For the analysis in a moving frame of reference, the convection velocity of the Karman vortices is evaluated from the trajectory of vortex center which is defined as the centroid of the vorticity field. Then, a saddle point is obtained by applying the critical point theory. Science the distributions of fluctuating Reynolds stresses defined by triple-decomposition are closely related with the existence of secondary vortices. the physical meaning of them is explained in conjunction with vortex center and saddle point trajectories. Finally, the temporal evolution of streamwise vortex is also discussed.

  • PDF

원형 실린더 후류 영역의 국소 열전달 특성 (Local Heat Transfer Characteristics in the Wake Region of a Circular Cylinder)

  • 장병훈
    • 에너지공학
    • /
    • 제14권1호
    • /
    • pp.30-36
    • /
    • 2005
  • 본 논문에서는 실린더 후류 영역의 열전달 특성에 대한 실험결과를 보고하였다. 정체점(θ=0°)로부터 실린더 뒷면(θ=180°)까지 국소 열전달을 측정하였으며, 축 방향에 대한 누셀트 수의 변화도 조사하였다. 덕트 중앙에 비하여 덕트 벽면근처의 후류영역 열전달계수는 58% 정도 높게 측정되었으며, 종횡비와 열전달 경계조건의 영향도 조사하였다.

비정상후류가 선형터빈익렬의 유동 특성 및 익혀의 열전달에 미치는 영향에 관한 연구 (Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade)

  • 윤순현;심재경;이대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.713-716
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

병렬로 배열된 두 개의 구에서 발생하는 후류의 특성 연구 (WAKE CHARACTERISTICS BEHIND TWO SPHERES IN A SIDE-BY-SIDE ARRANGEMENT)

  • 김동주
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.61-67
    • /
    • 2007
  • Numerical simulation of laminar flow over two spheres in a side-by-side arrangement is carried out to investigate the effect of the inter-sphere spacing on the flow characteristics. The Reynolds numbers considered are 100, 250, and 300, covering the steady axisymmetric, steady planar-symmetric, and unsteady planar-symmetric flows in the case of a single sphere. Results show that the drag and lift coefficients and wake structures are significantly modified depending on both the Reynolds number and the spacing between the spheres. At Re=100, the flow is steady planar-symmetric irrespective of the spacing, but it shows some variation according to the spacing at Re=250 and 300. That is, the flow maintains planar symmetry of the single-sphere wake at large spacings, while it loses the symmetry at small spacings due to the generation of new asymmetric vortical structures. It is also shown that the drag and lift coefficients generally increase with decreasing inter-sphere spacing because the high pressure region is formed near the gap between the spheres.

비정상후류가 선형터빈익렬의 유동 특성 및 익형의 열전달에 미치는영향에 관한 연구 (Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade)

  • 윤순현;심재경;이대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.393-396
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

나선형의 표면돌출물이 부착된 원주의 근접후류에 관한 실험적 연구 (Experimental Study on the Near Wake Behind a Circular Cylinder with Helical Surface Protrusions)

  • 권기정;김형범
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2601-2610
    • /
    • 1996
  • Surface protrusions have been attached on a cylinder surface to reduce the flow-induced structural vibration by controlling the wake flow. Wind tunnel tests on the near wake of a circular cylinder with surface protrusions were carried out to investigate the flow characteristics of the controlled wake. Three experimental models were used in this experiment; one plain cylinder of diameter D and two cylinders wrapped helically by three small wires of diameter d=0.075D with pitches of 5D and 10D, respectively. Free stream velocity was ranged to have Reynolds number from 5000 to 50,000. Streamwise and vertical velocity components of the wake were measured by a hot-wire anemometry. The spanwise velocity component measured by a one-component fiber optic LDV revealed that time-averaged wake field has a nearly two-dimensional structure. It was found that the surface protrusions elongate the vortex formation region, which decrease the vortex shedding frequency. The suppression of vortices caused by the surface protrusions increases the velocity deficit in the center of wake region.

평판 근접 후류에서 경계층의 유동조건에 따른 레이놀즈 응력분포 (Reynolds Stress Distribution on Boundary Layer Flow Conditions in the Near-Wake of a Flat Plate)

  • 김동하;장조원
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.53-66
    • /
    • 2004
  • An experimental study was carried out in order to investigate the influence of flow conditions on a boundary layer in the near-wake of a flat plate. The flow conditions in the vicinity of the trailing edge that is influenced by upstream condition history are an essential factor that determines the physical characteristics of a near-wake. Tripping wires attached at various positions were selected to change flow conditions of a boundary layer. The flows such as laminar, transitional, and turbulent boundary layer at 0.98C from the leading edge are imposed in order to investigate the evolution of symmetric and asymmetric wake. An x-type hot-wire probe(55P61) is employed to measure at 8 stations in the near-wake. Test results show that the near-wake for the case of a turbulent boundary layer is relatively insensitive to instability after separating at the trailing edge, and Reynolds shear stress in the near-wake for the case of a turbulent boundary layer collapses due to turbulent kinetic energy.

  • PDF

나란히 배열된 한 쌍의 원형실린더를 지나는 유동의 특성 (Characteristics of Flow over a Pair of Circular Cylinders in Side-by-Side Arrangements)

  • 강상모
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1754-1759
    • /
    • 2003
  • Two-dimensional flow over a pair of circular cylinders in side-by-side arrangements at low Reynolds numbers has been numerically investigated in this study. Numerical simulations are performed, using the immersed boundary method, in the ranges of $40{\leq}Re{\leq}160$ and $g^{\ast}<5$, where Re and $g^{\ast}$ are, respectively, the Reynolds number and the spacing between the two cylinder surfaces divided by the cylinder diameter. Results show that total six kinds of wake patterns are observed over the ranges: antiphase-synchronized, inphase-synchronized, flip-flopping, single bluff-body, deflected, and steady wake patterns. It is found that the characteristics of the flow significantly depends both on the Reynolds number and gap spacing, with the latter much stronger than the former. Instantaneous flow fields, time traces, flow statistics and so on are presented to identify the wake patterns and then to understand the underlying mechanism. It is remarkable that, for the deflected wake pattern, the gap flow is deflected invariably to the cylinder of higher drag coefficient and the deflection way does not change at all. Moreover, the bifurcation phenomena where either of two wake patterns can occur are found at certain flow conditions.

  • PDF

축류 홴의 익단누설와류 및 후류에서 유량에 따른 변동속도의 주파수 특성 (Frequency Characteristics of Fluctuating Velocity According to Flow Rates in a Tip Leakage Vortex and a Wake Flow in an Axial Flow Fan)

  • 장춘만;김광용;후카노토오루
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.181-188
    • /
    • 2004
  • The frequency characteristics in an axial flow fan operating at a design and three off-design operating conditions have been investigated by measuring the velocity fluctuation of a tip leakage vortex and a wake flow. Two hot-wire probe sensors rotating with the fan rotor. a fixed and a moving ones, were introduced to obtain a cross-correlation coefficient between two sensors as well as the fluctuating velocity. The results show that the spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region of higher flow rates than those in the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition. Detailed wake flow just downstream of the rotor blade was also measured by the rotating hot-wire sensor. The peak frequency of a high velocity fluctuation due to Karman vortex shedding in the wake region is mainly observed at the higher flow rate condition than that in the design point.

톱니형 휜이 부착된 원주의 근접후류특성 연구 (III) - 속도회복 메카니즘에 관하여 - (Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (III) - Mechanism of Velocity Recovery -)

  • 류병남;김경천;부정숙
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.347-356
    • /
    • 2003
  • The characteristics of near wakes of circular cylinders with serrated fins are investigated experimentally using a hot-wire anemometer for various freestream velocities. Near wake structures of the fin tubes are observed using a phase average technique. With increasing fin height and decreasing fin pitch. oscillation of streamwise velocity increases. It file oscillation of lateral velocity decreases. The time averaged V-component velocity distribution of the finned tube is contrary to that of the circular cylinder due to the different strength of entrainment flow. This strength is affected by the distance of (equation omitted) = 1.0 contour lines. (equation omitted) = 1.0 contour line approaches to the wake center line when the fin density is increased. When the distance between (equation omitted) = 1.0 contour lines comes close the shear force should be increased and the flow toward the wake center line can be more strengthened because of the shear force. Factors related to the velocity recovery in the near wake of the finned tube are attributed to tile turbulent intensity, the boundary layer thickness. the position and strength of entrainment process.