• Title/Summary/Keyword: Wagner stem

Search Result 7, Processing Time 0.024 seconds

Study on the Growth and the Drought Resistance of Amorpha fructicosa under the Control of Water Supply (수분공급조절에 의한 족제비싸리의 생장과 내건성에 관한 연구)

  • Hong, Kyung-Hae;Kim, Woen
    • The Korean Journal of Ecology
    • /
    • v.5 no.2_3
    • /
    • pp.123-131
    • /
    • 1982
  • The growth and the resistance of Amorpha fructicosa L. under water control was experimented in frames out of doors. The plant grew in a wagner's pot under water control. The soil moisture content was controlled at 5%, 10%, 15% and 20%. The growth of leaf, stem and root in the groups of 5% and 10% soil moisture content were different from values in the groups of 15% and 20%. The T/R ratio in the groups of 5% and 10% soil moisture content were different from the ratio in the groups of 15% and 20% soil moisture content. The T/R ratio of former was lower than the latter, but the C/F ratio of the former was higher than the latter. RGR and NAR of Amorpha fructicosa decreased in 5% and 10% soil moisture content but increased in 15% and 20% soil moisture content during growing period. The maximum values of RGR and NAR were respectively 0.089 and 0.080 at 20% soil moisture content. The highest value of LAR was 1.560 at 5% soil moisture content. RGR and NAR were comparatively affected by soil moisture content.

  • PDF

Drought Resistance of Several Soybean Cultivars (주요대두품종(主要大豆品種)의 내건성(耐乾性)에 관(關)한 연구(硏究))

  • Choi, Chang Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.1
    • /
    • pp.36-46
    • /
    • 1988
  • Twelve soybean cultivars were cultivated in the 1/2,000a. Wagner pots with irrigation and without irrigation for 30 days after flowering, and the differences of plant growth and bean yield among cultivars were compared. And to investigate the varietal differences in the rate of photosynthesis under different relative humidity, 6soybean cultivars were cultivated in 1/2,000a. Wagner pot and the rate of photosynthesis of each soybean cultivar at flowering time was measured under the relative humidity of 80, 70, 60, 50 and 40%. The results obtained are summarized as follows; 1. The days to maturity of the soybean cultivars were shortened by non-irrigation treatment. The response of the maturing dates to non-irrigation was significantly different among the soybean cultivars. The days for maturing of Paldal, Danyeob and Eundaedu were delayed 2 days but those of Jangbaek and Tamahomare were delayed about 7 to 8 days under non-irrigation treatment. 2. The stem length, stem diameter, number of nodes of the mainstem, number of branches and number of branch nodes of all soybean cultivars were decreased by non-irrigation treatment. The number of branches and the number of branch nodes were especially severely influenced by non-irrigation treatment. 3. The number of pods per plant and the number of perfect pods was significantly reduced by non-irrigation treatment but the number of imperfect pods was increased. The non-irrigation treatment reduced the number of pods per plant by 58.0% and the ratio of the number of the perfect pods per plant by 46.6% relative to the ordinary cultivation with irrigation. 4. The grain yield of all cultivars was significantly reduced by the non-irrigation treatment, and average grain yield of soybean cultivars cultivated under non-irrigation treatment was 35.9% of that of soybean cultivars cultivated with irrigation. The influence of non-irrigation treatment was lowest in Paldal and significantly high in Tamahomare and Jangbaek. 5. The rate of photosynthesis of soybean leaves was significantly different among cultivars and was also influenced by relative humidity. Ratio of the photosynthetic amount of soybean leaves at 40% RH to the maximum photosynthesis at optimal humidity was 97.2% in Paldal, 96.4% in Danyeob and 88.8% in Baekun. 6. At 40% relative air humidity, highly significant correlations were found among the photosynthesis rate, the amount of transpiration and the respiration rate.

  • PDF

Effect of Sulfur Application on Mulberry Growth and Chemical Composition of Soil and Leaf. (황시용이 뽕나무의 생육 및 토양과 뽕잎의 화학성에 미치는 영향)

  • 이원주;임수호
    • Journal of Sericultural and Entomological Science
    • /
    • v.37 no.2
    • /
    • pp.109-113
    • /
    • 1995
  • Effects of sulfur application on mulberry growth and soil chemical properties were examined in mulberry trees grown in a green house. Mulberry graftages were planted in Wagner pots and sulfur was applied at the levels of 0, 30, 60, or 120 kg/10a. Mulberry stem growth increased by 3.2 cm at 30 kg/ha than at 0 kg/ha sulfur application. Stem growth, however, decreased by 3.7 cm with the application of sulfur higher than at 60 kg/10a. Soil pH changed by the application of sulfur. With the application of sulfur at 120 kg/10a, soil pH decreased by 3.0. Temporal changes in the effective from sulfur content in soil indicated that sulfur dissolved between 4 to 10 days after application in the soil. Content of moisture and chemical components in mulberry leaves was also affected by the application levels of sulfur. Moisture, total-N, No3-N, K, and S content decreased, but F and Ca content increased with the application of sulfur lower than at 60 kg/10a. With the application of sulfur higher than at 60 kg/10a, P, S, and K content increased.

  • PDF

The Influence of Nitrogen and Soil Moisture Content on Yield Components of Soybeans (질소 및 토양수분이 대두의 수량형질에 미치는 영향)

  • Yeon-Kyu Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.15
    • /
    • pp.69-75
    • /
    • 1974
  • This experiment was conducted to investigate the influence of different amount of nitrogen and deficiency of soil moisture on yield components of soybean. Soybean were seeded on 1/2000a wagner pot. Deficiency of soil moisture was treated at each growth atage of soybean. 1.In case of deficiencyt of soil moisture at the flowering time in the plot of non-nitrogen(NO D3), the growth duration of soybean was shortened about three to four days. 2. The leaf area was greatly affected by the influence of both treatments till 49days after germinating. 3.The increase of stem height, stem doameter,number of branches and lengeh of the branches came to an end about 70 days after seeding. These growing condition of tje soybean were lowest the plot of No D$_1$,in which the frowth of the soybeans were poor at the early stage. 4.The number of pods was not increased by the increase of fertilizing nitrogenous fertilizer. The number of pods was much decreased by the influence of soil mousture deiciency, and under this condition, the proportion of main stem pods and two or three grain pods was high. 5.The 3rd and 4h nodes and the 10th to 12th nodes from bottom had more pods than the other nodes had, but of the plants had grown well, they had more pods on the 3rd and 4th nodes, but if the plants had grown poorly, they had more pods on the 10th to 12th nodes. 6.The content of protein in the soybean was low at the plit of N。D$_4$which had not heavy weight of 100 grains, and the content of oil in the soybean was low in the plot in which each plant had a small number of grains.

  • PDF

Effects of Water Stress on Leaf Orientation, Apparent Photosynthetic Rate, Transpiration Rate, Yield and Its Related Traits in Soybean Plants (한발조건이 콩식물체의 엽운동, 광합성능, 증산량, 수량 및 관련 형질에 미치는 영향)

  • 천종은;김진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.4
    • /
    • pp.313-319
    • /
    • 1992
  • To investigate effects of water stress on apparent photosynthetic, transpiration rates, leaf orientation, yield and its related traits, four soybean varieties were planted on the Wagner pots in a plastic house covered with polyethylene film. As the light intensity and leaf temperature in a day increased, the movement of central leaflet in the second leaf of main stem occurred earlier than that of the lateral leaflet. The apparent photosynthetic rate of the central leaflet was higher than that of the lateral leaflet, but light intercept and leaf temperature of lateral leaflet were higher than those of the central leaflet. The apparent photosynthetic rate had highly positive correlation with the photon flux density, stomatal conductance and temperature, respectively. The photon flux density, stomatal conductance, transpiration and photosynthetic rates in the control were significantly higher than those in the water stress plot. The yield and its related traits in the water stress plot became decreased significantly in comparison with the control.

  • PDF

Effects of Soil Texture on Germanium Uptake and Growth in Rice Plant by Soil Application with Germanium (게르마늄 토양처리시 토성이 벼의 생육 및 게르마늄 흡수에 미치는 영향)

  • Lim, Jong-Sir;Seo, Dong-Cheol;Park, Woo-Young;Cheon, Yeong-Seok;Lee, Seong-Tae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2008
  • The growth characteristics and the Germanium (Ge) uptake of rice plant (Hopyungbyeo) in soil with Ge were investigated under different soil textures to obtain the basic information for agricultural utilization of Ge. This study was carried out in the Wagner pot ($15,000^{-1}a$). Ge concentration in soils such as clay loam, silt loam, loam and sandy loam for rice plant cultivation was treated at $8mg\;kg^{-1}$. The growth status of rice plant was almost similar in all soil texture, and rice yield was higher in the order of silt loam > clay loam > loam > sandy loam. In rice bran, the Ge uptakes in silt loam, clay loam, loam and sandy loam were 980, 868, 754 and $803{\mu}g\;pot^{-1}$, respectively. The Ge uptakes of brown rice and polish rice were greater in the order of silt loam > sandy loam > clay loam > loam. In silt loam, the Ge uptake rates in leaf, stem, root, rice bran and brown rice were 19.7, 2.3, 0.03, 3.1 and 0.44%, respectively. Therefore, under the given experimental condition the optimum soil texture for production of functional rice with Ge is a silt loam.

Translocation of Tolclofos-methyl from Ginseng Cultivated Soil to Ginseng (Panax ginseng C. A. Meyer) and Residue Analysis of Various Pesticides in Ginseng and Soil (토양 중 잔류된 Tolclofos-methyl의 인삼(Panax ginseng C. A. Meyer)에 대한 이행 및 잔류 특성)

  • Kim, Ji Yoon;Kim, Hea Na;Saravanan, Manoharan;Heo, Seong Jin;Jeong, Haet Nim;Kim, Jang Eok;Kim, Kwan Rae;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.130-140
    • /
    • 2014
  • Recently, some of the previous studies reported that tolclofos-methyl is still exist in ginseng cultivated soil, even though it is has been banned for ginseng. Therefore, the current study was aimed to examine the levels of absorption and translocation of tolclofos-methyl from ginseng cultivated soil to ginseng root and leaf stem for the period of 1 year. For this study, ginseng plants were transplanted in pots and treated with $5.0mg\;kg^{-1}$ of tolclofos-methyl (50% WP). At the end of each interval periods (every three months) the samples (soil, roots and leaf stems) were collected and analyzed the absorption and translocation levels of tolclofos-methyl using gas chromatography and mass spectrometry (GC-MS). The limit of quantitation of tolclofos-methyl was found to be $0.02mg\;kg^{-1}$ and 70.0~120.0% recovery was obtained with coefficient of variation of less than 10% regardless of sample types. In this study, a considerable amount of translocation of tolclofos-methyl residues were found in soil (4.28 to $0.06mg\;kg^{-1}$), root (7.09 to $1.54mg\;kg^{-1}$) and leaf stem (0.79 to $0.69mg\;kg^{-1}$). The results show that the tolclofos-methyl was absorbted and translocated from ginseng cultivated soil to ginseng root and ginseng leaf stem and found to be decreased time-coursely. Secondly, we were also analyzed soil, root and leaf stems samples from Hongcheon, Cheorwon, Punggi and Geumsan by GC-MS/MS (172 pesticides), LC-MS/MS (74 pesticides). In this study, 43 different pesticides were detected ($0.01{\sim}7.56mg\;kg^{-1}$) in soil, root and leaf stem. Further, tolclofos-methyl was detected 4 times separately in root sample alone which is less ($0.01{\sim}0.05mg\;kg^{-1}$) than their maximum residual limit (MRL) in ginseng. Consequently, the results from both studies indicate the residues of tolclofos-methyl found in ginseng cultivated soil and ginseng ensuring their safety level. Moreover, long-term evaluations are needed in order to protect the soil as well as ginseng free from tolclofos-methyl residues.