• Title/Summary/Keyword: WZ

Search Result 40, Processing Time 0.022 seconds

Wyner-Ziv Video Compression using Noise Model Selection (잡음 모델 선택을 이용한 Wyner-Ziv 비디오 압축)

  • Park, Chun-Ho;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.58-66
    • /
    • 2009
  • Recently the emerging demands of the light-video encoder promotes lots of research efforts on DVC (Distributed Video Coding). As an appropriate video compression method, DVC has been studied, and Wyner-Ziv (WZ) video compression is its one representative structure. The WZ encoder splits the image into two kinds of frames, one is key frame which is compressed by conventional intra coding, and the other is WZ frame which is encoded by WZ coding. The WZ decoder decodes the key frame first, and estimates the WZ frame using temporal correlation between key frames. Estimated WZ frame (Side Information) cannot be the same as the original WZ frame due to the absence of the WZ frame information at decoder. As a result, the difference between the estimated and original WZ frames are regarded as virtual channel noise. The WZ frame is reconstructed by removing noise in side information. Therefore precise noise estimation produces good performance gain in WZ video compression by improving error correcting capability by channel code. But noise cannot be estimated precisely at WZ decoder unless there is good WZ frame information, and generally it is estimated from the difference of corresponding key frames. Also the estimated noise is limited by comparing with frame level noise to reduce the uncertainty of the estimation method. However these methods cannot provide good noise estimation for every frame or each bit plane. In this paper, we propose a noise nodel selection method which chooses a better noise model for each bit plane after generating candidate noise models. Experimental result shows PSNR gain up to 0.8 dB.

Adaptive Hard Decision Aided Fast Decoding Method in Distributed Video Coding (적응적 경판정 출력을 이용한 고속 분산 비디오 복호화 기술)

  • Oh, Ryang-Geun;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.66-74
    • /
    • 2010
  • Recently distributed video coding (DVC) is spotlighted for the environment which has restriction in computing resource at encoder. Wyner-Ziv (WZ) coding is a representative scheme of DVC. The WZ encoder independently encodes key frame and WZ frame respectively by conventional intra coding and channel code. WZ decoder generates side information from reconstructed two key frames (t-1, t+1) based on temporal correlation. The side information is regarded as a noisy version of original WZ frame. Virtual channel noise can be removed by channel decoding process. So the performance of WZ coding greatly depends on the performance of channel code. Among existing channel codes, Turbo code and LDPC code have the most powerful error correction capability. These channel codes use stochastically iterative decoding process. However the iterative decoding process is quite time-consuming, so complexity of WZ decoder is considerably increased. Analysis of the complexity of LPDCA with real video data shows that the portion of complexity of LDPCA decoding is higher than 60% in total WZ decoding complexity. Using the HDA (Hard Decision Aided) method proposed in channel code area, channel decoding complexity can be much reduced. But considerable RD performance loss is possible according to different thresholds and its proper value is different for each sequence. In this paper, we propose an adaptive HDA method which sets up a proper threshold according to sequence. The proposed method shows about 62% and 32% of time saving, respectively in LDPCA and WZ decoding process, while RD performance is not that decreased.

Adaptive Quantization for Transform Domain Wyner-Ziv Residual Coding of Video (변환 영역 Wyner-Ziv 잔차 신호 부호화를 위한 적응적 양자화)

  • Cho, Hyon-Myong;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.98-106
    • /
    • 2011
  • Since prediction processes such as motion estimation motion compensation are not at the WZ video encoder but at its decoder, WZ video compression cannot have better performance than that of conventional video encoder. In order to implement the prediction process with low complexity at the encoder, WZ residual coding was proposed. Instead of original WZ frames, WZ residual coding encodes the residual signal between key frames and WZ frames. Although the proposed WZ residual coding has good performance in pixel domain, it does not have any improvements in transform domain compared to transform domain WZ coding. The WZ residual coding in transform domain is difficult to have better performance, because pre-defined quantization matrices in WZ coding are not compatible with WZ residual coding. In this paper, we propose a new quantization method modifying quantization matrix and quantization step size adaptively for transform domain WZ residual coding. Experimental result shows 22% gain in BDBR and 1.2dB gain in BDPSNR.

MASS EXCHANGE OF THE ECLIPSING BINARY WZ ANDROMEDAE (식변광성 WZ ANDROMEDAE의 질량교환)

  • Oh, Kyu-Dong
    • Journal of The Korean Astronomical Society
    • /
    • v.10 no.1
    • /
    • pp.23-30
    • /
    • 1977
  • We have collected times of minimum light available in the literature for WZ Andromedae and analyzed the nature of the period variations. The O-C diagram of WZ And clearly shows that two abrupt changes near JD 2418000 and JD 2435000 are deduced by dp/p=$+4.24{\timesa}10^{-6}$ and dp/p=$-2.46{\times}10^{-6}$, respectively. For these period changes, we have introduced the equations which represent mass exchange in the close binery systems given by Biermann and Hall (1973), and the computation yieleled a mass flow of $7.42{\times}10^{-5}M$. from the hotter component to the cooler one. Due to the amount of mass flow, the period decrease may also be calculated. The theoritical new period after JD 2435000 became 0.69565858 days, which is in good agreement with the value 0.69566034 days found in the O-C diagram. In this computation, the mass ratio of WZ And suggested that the hotter star is the filling its Rochclooe, and thus WZ And is in Paczynski's stage II.

  • PDF

The study on dynamic fracture toughness of friction-welded M.E.F. dual phase steel (복합조직강의 마찰용접부에 대한 동적파괴특성)

  • 오세욱;유재환;이경봉
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.19-27
    • /
    • 1989
  • Both the SS41 steel and the M.E.F(martensite encapsulated islands of frrite) dual phase steel made of SS41 steel by heat treatment were welded by friction welding, and then manufactured machinemade Vnotch standard Charpy impact specimens and precracked with a fatigue system at BM(base metal), HAZ(heat affected zone) and WZ(weld interface Zone). The impact test of them was performed with an instrumented impact test machine at a number of temperatures in constant loading velocity and the dynamic fracture characteristics were studied on bases of the absorbed energy, dynamic fracture toughness and fractography from the test. The results obtained are as follows; At the room temperature, the absorbed energy is HAZ.geq.WZ.geq.BM in case of the M.E.F. dual phase steel: BM.geq.HAZ.geq.WZ in case of the SS41 steel, HAZ.geq.BM.geq.WZ at the low temperature. The absorbed energy is decreased markedly with the temperature lowering; it is highly dependent on the temperature. The dynamic fracture toughness of the M.E.F. dual phase steel is HAZ.geq.WZ.geq.BM at the room temperature; BM.geq.WZ.geq.HAZ below-60.deg. C. Therefore the reliability of friction welding is uncertain at the low temperature(below-60.deg. C). The dynamic fracture toughness of the SS41 steel; HZA.geq.WZ.geq.BM at overall temperature region. The flaw formed by rotational upsetting pressure was shown y SEM; in this region. The absorbed energy per unit area and dynamic fracture toughness were low relative to other region.

  • PDF

CCD PHOTOMETRY OF CONTACT BINARY WZ Cephei (접촉쌍성 WZ Cephei의 CCD 측광관측)

  • Lee, Woo-Baik;Kang, Young-Woon;Oh, Kyu-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • We present the full BVR light curves and five times of minima of WZ Cep to provides a complete photometric solution and to confirm the long term variation of the light curves. Our light curves show symmetry while previous light curves of Hoffmann (1984) show a high degree of asymmetry (the O'Connell effect). The BVR light curves were analyzed by the method of Wilson-Devinney Differential Correction. Our photometric results show a good agreement with those of Djurasevic et al. (1998).

Side Information Extrapolation Using Motion-aligned Auto Regressive Model for Compressed Sensing based Wyner-Ziv Codec

  • Li, Ran;Gan, Zongliang;Cui, Ziguan;Wu, Minghu;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.366-385
    • /
    • 2013
  • In this paper, we propose a compressed sensing (CS) based Wyner-Ziv (WZ) codec using motion-aligned auto regressive model (MAAR) based side information (SI) extrapolation to improve the compression performance of low-delay distributed video coding (DVC). In the CS based WZ codec, the WZ frame is divided into small blocks and CS measurements of each block are acquired at the encoder, and a specific CS reconstruction algorithm is proposed to correct errors in the SI using CS measurements at the decoder. In order to generate high quality SI, a MAAR model is introduced to improve the inaccurate motion field in auto regressive (AR) model, and the Tikhonov regularization on MAAR coefficients and overlapped block based interpolation are performed to reduce block effects and errors from over-fitting. Simulation experiments show that our proposed CS based WZ codec associated with MAAR based SI generation achieves better results compared to other SI extrapolation methods.

A Study on Determining the Optimal Size of Bicycle Waiting Zone under Hook-Turn Operation (Hook-Turn 통행방식의 적정 자전거 대기공간 크기 결정에 관한 연구)

  • Lim, Guk-Hyun;Kim, Nam-Sun;Lee, Sang-Soo;Nam, Doohee;Kim, Jeong-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.42-53
    • /
    • 2016
  • This study aims to evaluate the performance of Hook-turn operation with various sizes of bicycle waiting zone(WZ) and to determine the optimal size of bicycle WZ under various traffic and control circumstances. An extensive simulation study was performed to examine bicycle and vehicle delay trends for given experimental design. Results showed that vehicle delay was insensitive to the size of waiting zone, but bicycle delay was reduced as the size of waiting zone increased in general. The delay performance indicated a similar trend between with RTOR and without RTOR operation, but vehicle delay slightly increased and bicycle delay slightly decreased without RTOR. Regarding to optimal waiting zone size, 6 WZ was recommended for general conditions with RTOR, but 9 WZ was recommended when bicycle left-turn volume was greater than 120 v/h. 6 WZ was recommended for general conditions without RTOR, but 12 WZ was recommended when bicycle left-turn volume was greater than 90 v/h.

An Effective MC-BCS-SPL Algorithm and Its Performance Comparison with Respect to Prediction Structuring Method (효과적인 MC-BCS-SPL 알고리즘과 예측 구조 방식에 따른 성능 비교)

  • Ryug, Joong-seon;Kim, Jin-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1355-1363
    • /
    • 2017
  • Recently, distributed compressed video sensing (DCVS) has been actively studied in order to achieve a low complexity video encoder by integrating both compressed sensing and distributed video coding characteristics. Conventionally, a motion compensated block compressed sensing with smoothed projected Landweber (MC-BCS-SPL) has been considered as an effective scheme of DCVS with all compressed sensing frames pursuing the simplest sampling. In this scheme, video frames are separately classified into key frames and WZ frames. However, when reconstructing WZ frame with conventional MC-BCS-SPL scheme at the decoder side, the visual qualities are poor for temporally active video sequences. In this paper, to overcome the drawbacks of the conventional scheme, an enhanced MC-BCS-SPL algorithm is proposed, which corrects the initial image with reference to the key frame using a high correlation between adjacent key frames. The proposed scheme is analyzed with respect to GOP (Group of Pictures) structuring method. Experimental results show that the proposed method performs better than conventional MC-BCS-SPL in rate-distortion.

Adaptive Correlation Noise Model for DC Coefficients in Wyner-Ziv Video Coding

  • Qin, Hao;Song, Bin;Zhao, Yue;Liu, Haihua
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.190-198
    • /
    • 2012
  • An adaptive correlation noise model (CNM) construction algorithm is proposed in this paper to increase the efficiency of parity bits for correcting errors of the side information in transform domain Wyner-Ziv (WZ) video coding. The proposed algorithm introduces two techniques to improve the accuracy of the CNM. First, it calculates the mean of direct current (DC) coefficients of the original WZ frame at the encoder and uses it to assist the decoder to calculate the CNM parameters. Second, by considering the statistical property of the transform domain correlation noise and the motion characteristic of the frame, the algorithm adaptively models the DC coefficients of the correlation noise with the Gaussian distribution for the low motion frames and the Laplacian distribution for the high motion frames, respectively. With these techniques, the proposed algorithm is able to make a more accurate approximation to the real distribution of the correlation noise at the expense of a very slight increment to the coding complexity. The simulation results show that the proposed algorithm can improve the average peak signal-to-noise ratio of the decoded WZ frames by 0.5 dB to 1.5 dB.