• Title/Summary/Keyword: WPT(Wireless power transfer)

Search Result 138, Processing Time 0.026 seconds

Resonant Wireless Power Transfer System with High Efficiency using Metamaterial Cover (메타구조 기반의 고효율 공진형 무선전력전송 시스템)

  • Kim, Hyoungjun;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.47-51
    • /
    • 2014
  • In this paper, unit cell and arrayed cover for improving the transfer efficiency of resonant wireless power transfer system is proposed. We used the characteristic of zero refractive index for focusing a magnetic field between the transmitting resonator and receiving resonator. For zero refractive index, we designed the unit cell structure that have a negative value of effective permeability. The size of proposed unit cell based on metamaterial structure is $70mm{\times}70mm{\times}3.2mm$, operating frequency is 13.56 MHz. And, the size of arrayed cover is $400mm{\times}400mm{\times}3.2mm$, is consists of 2-layers. The transfer efficiency of the proposed wireless power transfer system are 94.8 %, 93.2 %, 91.4 %, 90.8 % at 100 mm, 200 mm, 300 mm and 400 mm (distance between transmitting and receiving resonator), respectively. And proposed WPT system has a transfer efficiency high than 90 % over the overall distances.

The Design of Resonator for Miniaturization of Magnetic Resonance Wireless Power Transfer System (자기공진형 무선전력전송 시스템의 소형화를 위한 공진기 설계)

  • Kang, Seok Hyon;Jung, Chang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.163-169
    • /
    • 2016
  • In this paper, we miniaturized the loop and coil in magnetic resonance wireless power transfer(MR-WPT) system for application to the small mobile device. The proposed disk type double coil resonator was designed to cause resonance at 6.87 MHz. It is composed of thin copper on both-side of acrylic substrate structured 2 mm width, 1 mm pitch and 8 turns. The outer radius of spiral coil pattern is 9 cm. And the proposed loop was made of the copper wire 5 mm diameter of cross-section. The size of loop is 10 cm diameter. For resonance at 6.87 MHz, the capacitor with 3,300 pF was connected in series on the loop. We rearranged the resonators and organized several WPT systems which is rearranged by resonators. The highest transfer efficiency of miniaturized WPT system was 35.67 %. This proposed design of spiral double coil will contribute to make resonator smaller for appling small and thin mobile device.

Design of a High Efficiency Resonator for Wireless Power Transfer (무선 전력 전송용 고효율 공진기 설계)

  • Jang, Yo-Han;Kwon, Jae-Soon;Park, Jae-Su;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.820-826
    • /
    • 2011
  • In this paper, an efficiency improvement method in the wireless power transfer system based on magnetic resonance is proposed. A combined helical-spiral structure is adopted for self-resonant coil and source and device coils are designed using circular loop structure. The proposed resonator utilizing combined helical-spiral structure yields 13 % efficiency improvement over that of an existing helical type resonator when the transmitting and receiving coils are separated by 120 mm. In addition, the size can be reduced by 33 % comparing to the previous resonator.

Comparison of Achievable Efficiency for Different Resonator Structures in a Magnetic Resonance-based Wireless Power Transfer System (자기 공진 기반의 무선전력전송 시스템에서 송수신 공진기의 구조 차이에 따른 달성 가능한 효율 비교)

  • Lee, Kisong;Yang, Haekwon;Ra, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1035-1041
    • /
    • 2017
  • In magnetic resonance-based wireless power transfer (WPT) systems, frequency splitting phenomenon, in which power transfer efficiency (PTE) decreases seriously as resonators are close to each other, is the problem that we should address for reliable power transfer in short distance. In this paper, we present WPT systems using an equivalent circuit model and analyze PTE and marginal coupling coefficient ($k_{split}$) where the frequency splitting occurs. In addition, we perform circuit-level simulations using Advanced Design System, and show that the achievable PTE is different for the structures of resonators when k>$k_{split}$. We confirm that higher PTE can be ensured as k increases in the case of identical resonators, while PTE is degraded as k increases in the case of non-identical resonators. Therefore, in short distance, in which k>$k_{split}$, it is more efficient for achieving reliable PTE to use identical resonators rather than non-identical resonators.

Joint Optimization for Residual Energy Maximization in Wireless Powered Mobile-Edge Computing Systems

  • Liu, Peng;Xu, Gaochao;Yang, Kun;Wang, Kezhi;Li, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5614-5633
    • /
    • 2018
  • Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT) are both recognized as promising techniques, one is for solving the resource insufficient of mobile devices and the other is for powering the mobile device. Naturally, by integrating the two techniques, task will be capable of being executed by the harvested energy which makes it possible that less intrinsic energy consumption for task execution. However, this innovative integration is facing several challenges inevitably. In this paper, we aim at prolonging the battery life of mobile device for which we need to maximize the harvested energy and minimize the consumed energy simultaneously, which is formulated as residual energy maximization (REM) problem where the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device are all considered as key factors. To this end, we jointly optimize the offloading ratio, energy harvesting time, CPU frequency and transmission power of mobile device to solve the REM problem. Furthermore, we propose an efficient convex optimization and sequential unconstrained minimization technique based combining method to solve the formulated multi-constrained nonlinear optimization problem. The result shows that our joint optimization outperforms the single optimization on REM problem. Besides, the proposed algorithm is more efficiency.

Characteristic Analysis of Induction Phenomena in the Nearby Mesh Structure Conductive Part of Large Capacity Wireless Power Transmission System (대용량 무선전력전송 환경 인근 메쉬구조 도전부 유도현상 특성 분석)

  • Chae, Dong-Ju;Yi, Geon-Ho;Lim, Hyun-Sung;Cho, Sung-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.207-214
    • /
    • 2019
  • A large-capacity wireless power system is a technology that transmits electric power of kW or more in a noncontact type. Electric cars, electric buses, and electric railways. In order to increase the power transmission efficiency, a resonance method using a frequency of kHz is applied and the efficiency is 80 ~ 90%. In this case, the loss is 10 ~ 20% other than efficiency, and corresponds to several hundreds of W to several kW in kW class wireless power transmission. 35 kW wireless feed system environment, and induced current in the nearby conductive part was measured. As a result of analysis, it was confirmed that induction phenomenon is higher as the loop configuration of the conductive part per area is dense. The increase of the induced current in the mesh loop is characterized by the density of the nearby conductive part having a permeability per unit area. The concentration of the magnetic field by the permeability is increased and the induction phenomenon causing the induction current is increased. It was confirmed that induction phenomenon increases by about 2.7 times when 9 times dense structure is formed.

Design and Performance Analysis of Magnetic Resonant Wireless Power Transfer Receiver for Implant Medical Device (인체 삽입형 자기 공진 무선전력전송 수신기 설계 및 성능 분석)

  • Kim, Sungjae;Ku, Hyunchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.935-941
    • /
    • 2018
  • In this study, we propose a suitable magnetic resonant wireless power transfer(WPT) system topology for size-limited implant medical devices(IMDs). The proposed modified series-parallel topology(mSPT) can be implemented by adding an inductor in series to the parallel-connected Rx coil and a capacitor. The topology achieves high efficiency when the Rx coil has a small inductance. The validity and operating conditions of the system are verified theoretically through circuit analysis. Experiments were conducted with bio-blocks, which are made of pork fat and muscle. When the Rx coils were inserted into the blocks at a depth of 2.5~10 mm, mSPT showed 17.79 % improved efficiency on average compared with the conventional series-series topology(SST). In the case of 32 dBm WPT in air, the Rx coil's heating rate for the mSPT was $0.18^{\circ}C/s$, whereas the SST was $0.75^{\circ}C/s$. It was confirmed that the mSPT is more suitable for an IMD-targeted WPT system.

High efficiency mid-power system for wireless power transfer and induction heating convergence technology (무선전력전송과 IH 기술융합을 위한 고효율 중전력 시스템)

  • Yoo, Ju-Seung;Lee, Jong-Ju;Song, Doo-Ik;Min, Byung-Duk;Cho, Jung-Gu;Lee, Seong-Hun;Yeom, Jung-Seok;Jang, Won-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.9-10
    • /
    • 2015
  • 본 논문에서는 전자기 유도의 동일 원리를 기반으로 하는 무선전력전송(WPT, Wireless Power Transfer)와 인덕션 히팅(IH, Induction Heating) 기술을 융합하기 위한 고효율 중전력(100W~2.4kW) 시스템을 제안한다. 제안하는 시스템은 고효율 PFC 컨버터와 무선전력 전송 및 IH렌지 겸용 고주파 인버터로 구성된다. PFC 컨버터는 단위역률과 동시에 고효율을 달성할 수 있는 Bridgeless PFC로 구성하였으며 인버터는 중전력 및 넓은 출력 범위를 지니는 Full-Bridge 인버터로 구성하였다. 무선전력전송과 IH렌지를 위한 송/수신부 코일 구조를 개발하였으며 최대 전력 전송을 위한 공진회로를 개발하였다. 중전력에서 고효율 및 시스템 안정성을 기반으로 하여 국내외 규제를 만족하는 시제품을 제작하여 상용화 가능성에 대한 확인을 목표로 한다.

  • PDF

Design of EMI reduction of Electric Vehicle Wireless Power Transfer Wireless Charging Control Module with Power Integrity and Signal Integrity (전원무결성과 신호무결성을 갖는 전기차 무선전력전송 무선충전컨트롤모듈 EMI 저감 설계)

  • Hong, Seungmo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.452-460
    • /
    • 2021
  • As the global electric vehicle (EV) market expands, eco-friendly EV that complement performance and safety problems continue to be released and the market is growing. However, in the case of EVs, the inconvenience of charging, safety problems such as electric shock, and electromagnetic interference (EMI) problems caused by the interlocking of various electronic components are problems that must be solved in EVs. The use of wireless power transmission technology can solve the problem of safety by not dealing with high current and high voltage directly and solving the inconvenience of charging EVs. In this paper, in order to reduce EMI a wireless charging control module, which is a key electronic component of WPT of EV. EMI reduction was designed through simulation of problems such as resonance and impedance that may occur in the power supply and signal distortion between high-speed communication that may occur in the signal part. Therefore, through the EMI reduction design with power integrity and signal integrity, the WPT wireless charging control module for electric vehicles reduces 10 dBu V/m and 15 dBu V/m, respectively, in 800 MHz to 1 GHz bands and 1.5 GHz bnad.

Design and characteristic investigations of superconducting wireless power transfer for electric vehicle charging system via resonance coupling method

  • Chung, Y.D.;Yim, Seong Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.21-25
    • /
    • 2014
  • As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUWPT4EV) system. As the HTS coil has an enough current density, it can deliver a mass amount of electric energy in spite of a small scale antenna. The SUCPT4EV system has been expected as a noble option to improve the transfer efficiency of large electric power. Such a system consists of two resonator coils; HTS transmitting antenna (Tx) coil and normal conducting receiver (Rx) coil. Especially, the impedance matching for each resonator is a sensitive and plays an important role to improve transfer efficiency as well as delivery distance. In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, within 45 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 15% compared with copper antenna. In addition, we achieved effective impedance matching conditions between HTS antenna and copper receiver at radio frequency (RF) power of 370 kHz.