• Title/Summary/Keyword: WORD2VEC

Search Result 224, Processing Time 0.025 seconds

Text Mining-Based Analysis of Customer Reviews in Hong Kong Cinema: Uncovering the Evolution of Audience Preferences (홍콩 영화에 관한 고객 리뷰의 텍스트 마이닝 기반 분석: 관객 선호도의 진화 발견)

  • Huayang Sun;Jung Seung Lee
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.4
    • /
    • pp.77-86
    • /
    • 2023
  • This study conducted sentiment analysis on Hong Kong cinema from two distinct eras, pre-2000 and post-2000, examining audience preferences by comparing keywords from movie reviews. Before 2000, positive keywords like 'actors,' 'performance,' and 'atmosphere' revealed the importance of actors' popularity and their performances, while negative keywords such as 'forced' and 'violence' pointed out narrative issues. In contrast, post-2000 cinema emphasized keywords like 'scale,' 'drama,' and 'Yang Yang,' highlighting production scale and engaging narratives as key factors. Negative keywords included 'story,' 'cheesy,' 'acting,' and 'budget,' indicating challenges in storytelling and content quality. Word2Vec analysis further highlighted differences in acting quality and emotional engagement. Pre-2000 cinema focused on 'elegance' and 'excellence' in acting, while post-2000 cinema leaned towards 'tediousness' and 'awkwardness.' In summary, this research underscores the importance of actors, storytelling, and audience empathy in Hong Kong cinema's success. The industry has evolved, with a shift from actors to production quality. These findings have implications for the broader Chinese film industry, emphasizing the need for engaging narratives and quality acting to thrive in evolving cinematic landscapes.

The Study of Comparing Korean Consumers' Attitudes Toward Spotify and MelOn: Using Semantic Network Analysis

  • Namjae Cho;Bao Chen Liu;Giseob Yu
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.5
    • /
    • pp.1-19
    • /
    • 2023
  • This study examines Korean users' attitudes and emotions toward Melon and Spotify, which lead the music streaming market. We used Text Mining, Semantic Network Analysis, TF-IDF, Centrality, CONCOR, and Word2Vec analysis. As a result of the study, MelOn was used in a user's daily life. Based on Melon's advantages of providing various contents, the advantage is judged to have considerable competitiveness beyond the limits of the streaming app. However, the MelOn users had negative emotions such as anger, repulsion, and pressure. On the contrary, in the case of Spotify, users were highly interested in the music content. In particular, interest in foreign music was high, and users were also interested in stock investment. In addition, positive emotions such as interest and pleasure were higher than MelOn users, which could be interpreted as providing attractive services to Korean users. While previous studies have mainly focused on technical or personal factors, this study focuses on consumer reactions (online reviews) according to corporate strategies, and this point is the differentiation from others.

Personalized Cross-Domain Recommendation of Books Based on Video Consumption Data (영상 소비 데이터를 기반으로 한 교차 도메인에서 개인 맞춤형 도서 추천)

  • Yea Bin Lim;Hyon Hee Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.8
    • /
    • pp.382-387
    • /
    • 2024
  • Recently, the amount of adult reading has been continuously decreasing, but the consumption of video content is increasing. Accordingly, there is no information on preferences and behavior patterns for new users, and user evaluation or purchase of new books are insufficient, causing cold start problems and data scarcity problems. In this paper, a hybrid book recommendation system based on video content was proposed. The proposed recommendation system can not only solve the cold start problem and data scarcity problem by utilizing the contents of the video, but also has improved performance compared to the traditional book recommendation system, and even high-quality recommendation results that reflect genre, plot, and rating information-based user taste information were confirmed.

Sentiment Analysis of Korean Reviews Using CNN: Focusing on Morpheme Embedding (CNN을 적용한 한국어 상품평 감성분석: 형태소 임베딩을 중심으로)

  • Park, Hyun-jung;Song, Min-chae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.59-83
    • /
    • 2018
  • With the increasing importance of sentiment analysis to grasp the needs of customers and the public, various types of deep learning models have been actively applied to English texts. In the sentiment analysis of English texts by deep learning, natural language sentences included in training and test datasets are usually converted into sequences of word vectors before being entered into the deep learning models. In this case, word vectors generally refer to vector representations of words obtained through splitting a sentence by space characters. There are several ways to derive word vectors, one of which is Word2Vec used for producing the 300 dimensional Google word vectors from about 100 billion words of Google News data. They have been widely used in the studies of sentiment analysis of reviews from various fields such as restaurants, movies, laptops, cameras, etc. Unlike English, morpheme plays an essential role in sentiment analysis and sentence structure analysis in Korean, which is a typical agglutinative language with developed postpositions and endings. A morpheme can be defined as the smallest meaningful unit of a language, and a word consists of one or more morphemes. For example, for a word '예쁘고', the morphemes are '예쁘(= adjective)' and '고(=connective ending)'. Reflecting the significance of Korean morphemes, it seems reasonable to adopt the morphemes as a basic unit in Korean sentiment analysis. Therefore, in this study, we use 'morpheme vector' as an input to a deep learning model rather than 'word vector' which is mainly used in English text. The morpheme vector refers to a vector representation for the morpheme and can be derived by applying an existent word vector derivation mechanism to the sentences divided into constituent morphemes. By the way, here come some questions as follows. What is the desirable range of POS(Part-Of-Speech) tags when deriving morpheme vectors for improving the classification accuracy of a deep learning model? Is it proper to apply a typical word vector model which primarily relies on the form of words to Korean with a high homonym ratio? Will the text preprocessing such as correcting spelling or spacing errors affect the classification accuracy, especially when drawing morpheme vectors from Korean product reviews with a lot of grammatical mistakes and variations? We seek to find empirical answers to these fundamental issues, which may be encountered first when applying various deep learning models to Korean texts. As a starting point, we summarized these issues as three central research questions as follows. First, which is better effective, to use morpheme vectors from grammatically correct texts of other domain than the analysis target, or to use morpheme vectors from considerably ungrammatical texts of the same domain, as the initial input of a deep learning model? Second, what is an appropriate morpheme vector derivation method for Korean regarding the range of POS tags, homonym, text preprocessing, minimum frequency? Third, can we get a satisfactory level of classification accuracy when applying deep learning to Korean sentiment analysis? As an approach to these research questions, we generate various types of morpheme vectors reflecting the research questions and then compare the classification accuracy through a non-static CNN(Convolutional Neural Network) model taking in the morpheme vectors. As for training and test datasets, Naver Shopping's 17,260 cosmetics product reviews are used. To derive morpheme vectors, we use data from the same domain as the target one and data from other domain; Naver shopping's about 2 million cosmetics product reviews and 520,000 Naver News data arguably corresponding to Google's News data. The six primary sets of morpheme vectors constructed in this study differ in terms of the following three criteria. First, they come from two types of data source; Naver news of high grammatical correctness and Naver shopping's cosmetics product reviews of low grammatical correctness. Second, they are distinguished in the degree of data preprocessing, namely, only splitting sentences or up to additional spelling and spacing corrections after sentence separation. Third, they vary concerning the form of input fed into a word vector model; whether the morphemes themselves are entered into a word vector model or with their POS tags attached. The morpheme vectors further vary depending on the consideration range of POS tags, the minimum frequency of morphemes included, and the random initialization range. All morpheme vectors are derived through CBOW(Continuous Bag-Of-Words) model with the context window 5 and the vector dimension 300. It seems that utilizing the same domain text even with a lower degree of grammatical correctness, performing spelling and spacing corrections as well as sentence splitting, and incorporating morphemes of any POS tags including incomprehensible category lead to the better classification accuracy. The POS tag attachment, which is devised for the high proportion of homonyms in Korean, and the minimum frequency standard for the morpheme to be included seem not to have any definite influence on the classification accuracy.

Analysis of Global Entrepreneurship Trends Due to COVID-19: Focusing on Crunchbase (Covid-19에 따른 글로벌 창업 트렌드 분석: Crunchbase를 중심으로)

  • Shinho Kim;Youngjung Geum
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.3
    • /
    • pp.141-156
    • /
    • 2023
  • Due to the unprecedented worldwide pandemic of the new Covid-19 infection, business trends of companies have changed significantly. Therefore, it is strongly required to monitor the rapid changes of innovation trends to design and plan future businesses. Since the pandemic, many studies have attempted to analyze business changes, but they are limited to specific industries and are insufficient in terms of data objectivity. In response, this study aims to analyze business trends after Covid-19 using Crunchbase, a global startup data. The data is collected and preprocessed every two years from 2018 to 2021 to compare the business trends. To capture the major trends, a network analysis is conducted for the industry groups and industry information based on the co-occurrence. To analyze the minor trends, LDA-based topic modelling and word2vec-based clustering is used. As a result, e-commerce, education, delivery, game and entertainment industries are promising based on their technological advances, showing extension and diversification of industry boundaries as well as digitalization and servitization of business contents. This study is expected to help venture capitalists and entrepreneurs to understand the rapid changes under the impact of Covid-19 and to make right decisions for the future.

  • PDF

Query-based Answer Extraction using Korean Dependency Parsing (의존 구문 분석을 이용한 질의 기반 정답 추출)

  • Lee, Dokyoung;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.161-177
    • /
    • 2019
  • In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.

A Hybrid Collaborative Filtering-based Product Recommender System using Search Keywords (검색 키워드를 활용한 하이브리드 협업필터링 기반 상품 추천 시스템)

  • Lee, Yunju;Won, Haram;Shim, Jaeseung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.151-166
    • /
    • 2020
  • A recommender system is a system that recommends products or services that best meet the preferences of each customer using statistical or machine learning techniques. Collaborative filtering (CF) is the most commonly used algorithm for implementing recommender systems. However, in most cases, it only uses purchase history or customer ratings, even though customers provide numerous other data that are available. E-commerce customers frequently use a search function to find the products in which they are interested among the vast array of products offered. Such search keyword data may be a very useful information source for modeling customer preferences. However, it is rarely used as a source of information for recommendation systems. In this paper, we propose a novel hybrid CF model based on the Doc2Vec algorithm using search keywords and purchase history data of online shopping mall customers. To validate the applicability of the proposed model, we empirically tested its performance using real-world online shopping mall data from Korea. As the number of recommended products increases, the recommendation performance of the proposed CF (or, hybrid CF based on the customer's search keywords) is improved. On the other hand, the performance of a conventional CF gradually decreased as the number of recommended products increased. As a result, we found that using search keyword data effectively represents customer preferences and might contribute to an improvement in conventional CF recommender systems.

Enhancing Korean Alphabet Unit Speech Recognition with Neural Network-Based Alphabet Merging Methodology (한국어 자모단위 음성인식 결과 후보정을 위한 신경망 기반 자모 병합 방법론)

  • Solee Im;Wonjun Lee;Gary Geunbae Lee;Yunsu Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.659-663
    • /
    • 2023
  • 이 논문은 한국어 음성인식 성능을 개선하고자 기존 음성인식 과정을 자모단위 음성인식 모델과 신경망 기반 자모 병합 모델 총 두 단계로 구성하였다. 한국어는 조합어 특성상 음성 인식에 필요한 음절 단위가 약 2900자에 이른다. 이는 학습 데이터셋에 자주 등장하지 않는 음절에 대해서 음성인식 성능을 저하시키고, 학습 비용을 높이는 단점이 있다. 이를 개선하고자 음절 단위의 인식이 아닌 51가지 자모 단위(ㄱ-ㅎ, ㅏ-ㅞ)의 음성인식을 수행한 후 자모 단위 인식 결과를 음절단위의 한글로 병합하는 과정을 수행할 수 있다[1]. 자모단위 인식결과는 초성, 중성, 종성을 고려하면 규칙 기반의 병합이 가능하다. 하지만 음성인식 결과에 잘못인식된 자모가 포함되어 있다면 최종 병합 결과에 오류를 생성하고 만다. 이를 해결하고자 신경망 기반의 자모 병합 모델을 제시한다. 자모 병합 모델은 분리되어 있는 자모단위의 입력을 완성된 한글 문장으로 변환하는 작업을 수행하고, 이 과정에서 음성인식 결과로 잘못인식된 자모에 대해서도 올바른 한글 문장으로 변환하는 오류 수정이 가능하다. 본 연구는 한국어 음성인식 말뭉치 KsponSpeech를 활용하여 실험을 진행하였고, 음성인식 모델로 Wav2Vec2.0 모델을 활용하였다. 기존 규칙 기반의 자모 병합 방법에 비해 제시하는 자모 병합 모델이 상대적 음절단위오류율(Character Error Rate, CER) 17.2% 와 단어단위오류율(Word Error Rate, WER) 13.1% 향상을 확인할 수 있었다.

  • PDF

Arabic Stock News Sentiments Using the Bidirectional Encoder Representations from Transformers Model

  • Eman Alasmari;Mohamed Hamdy;Khaled H. Alyoubi;Fahd Saleh Alotaibi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.113-123
    • /
    • 2024
  • Stock market news sentiment analysis (SA) aims to identify the attitudes of the news of the stock on the official platforms toward companies' stocks. It supports making the right decision in investing or analysts' evaluation. However, the research on Arabic SA is limited compared to that on English SA due to the complexity and limited corpora of the Arabic language. This paper develops a model of sentiment classification to predict the polarity of Arabic stock news in microblogs. Also, it aims to extract the reasons which lead to polarity categorization as the main economic causes or aspects based on semantic unity. Therefore, this paper presents an Arabic SA approach based on the logistic regression model and the Bidirectional Encoder Representations from Transformers (BERT) model. The proposed model is used to classify articles as positive, negative, or neutral. It was trained on the basis of data collected from an official Saudi stock market article platform that was later preprocessed and labeled. Moreover, the economic reasons for the articles based on semantic unit, divided into seven economic aspects to highlight the polarity of the articles, were investigated. The supervised BERT model obtained 88% article classification accuracy based on SA, and the unsupervised mean Word2Vec encoder obtained 80% economic-aspect clustering accuracy. Predicting polarity classification on the Arabic stock market news and their economic reasons would provide valuable benefits to the stock SA field.

A BERT-Based Deep Learning Approach for Vulnerability Detection (BERT를 이용한 딥러닝 기반 소스코드 취약점 탐지 방법 연구)

  • Jin, Wenhui;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1139-1150
    • /
    • 2022
  • With the rapid development of SW Industry, softwares are everywhere in our daily life. The number of vulnerabilities are also increasing with a large amount of newly developed code. Vulnerabilities can be exploited by hackers, resulting the disclosure of privacy and threats to the safety of property and life. In particular, since the large numbers of increasing code, manually analyzed by expert is not enough anymore. Machine learning has shown high performance in object identification or classification task. Vulnerability detection is also suitable for machine learning, as a reuslt, many studies tried to use RNN-based model to detect vulnerability. However, the RNN model is also has limitation that as the code is longer, the earlier can not be learned well. In this paper, we proposed a novel method which applied BERT to detect vulnerability. The accuracy was 97.5%, which increased by 1.5%, and the efficiency also increased by 69% than Vuldeepecker.