• Title/Summary/Keyword: WORD2VEC

Search Result 224, Processing Time 0.025 seconds

An Iterative Approach to Graph-based Word Sense Disambiguation Using Word2Vec (Word2Vec을 이용한 반복적 접근 방식의 그래프 기반 단어 중의성 해소)

  • O, Dongsuk;Kang, Sangwoo;Seo, Jungyun
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.1
    • /
    • pp.43-60
    • /
    • 2016
  • Recently, Unsupervised Word Sense Disambiguation research has focused on Graph based disambiguation. Graph-based disambiguation has built a semantic graph based on words collocated in context or sentence. However, building such a graph over all ambiguous word lead to unnecessary addition of edges and nodes (and hence increasing the error). In contrast, our work uses Word2Vec to consider the most similar words to an ambiguous word in the context or sentences, to rebuild a graph of the matched words. As a result, we show a higher F1-Measure value than the previous methods by using Word2Vec.

  • PDF

On Characteristics of Word Embeddings by the Word2vec Model (Word2vec 모델의 단어 임베딩 특성 연구)

  • Kang, Hyungsuc;Yang, Janghoon
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.263-266
    • /
    • 2019
  • 단어 임베딩 모델 중 현재 널리 사용되는 word2vec 모델은 언어의 의미론적 유사성을 잘 반영한다고 알려져 있다. 본 논문은 word2vec 모델로 학습된 단어 벡터가 실제로 의미론적 유사성을 얼마나 잘 반영하는지 확인하는 것을 목표로 한다. 즉, 유사한 범주의 단어들이 벡터 공간상에 가까이 임베딩되는지 그리고 서로 구별되는 범주의 단어들이 뚜렷이 구분되어 임베딩되는지를 확인하는 것이다. 간단한 군집화 알고리즘을 통한 검증의 결과, 상식적인 언어 지식과 달리 특정 범주의 단어들은 임베딩된 벡터 공간에서 뚜렷이 구분되지 않음을 확인했다. 결론적으로, 단어 벡터들의 유사도가 항상 해당 단어들의 의미론적 유사도를 의미하지는 않는다. Word2vec 모델의 결과를 응용하는 향후 연구에서는 이런 한계점에 고려가 요청된다.

Implementation of Korean Sentence Similarity using Sent2Vec Sentence Embedding (Sent2Vec 문장 임베딩을 통한 한국어 유사 문장 판별 구현)

  • Park, Sang-Kil;Shin, MyeongCheol
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.541-545
    • /
    • 2018
  • 본 논문에서는 Sent2Vec을 이용한 문장 임베딩으로 구현한 유사 문장 판별 시스템을 제안한다. 또한 한국어 특성에 맞게 모델을 개선하여 성능을 향상시키는 방법을 소개한다. 고성능 라이브러리 구현과 제품화 가능한 수준의 완성도 높은 구현을 보였으며, 자체 구축한 평가셋으로 한국어 특성을 반영한 모델에 대한 P@1 평가 결과 Word2Vec CBOW에 비해 9.25%, Sent2Vec에 비해 1.93% 더 높은 성능을 보였다.

  • PDF

Webtoon Search utilizing Genre Similarity with Word2Vec (Word2Vec 기반 장르 유사성을 활용한 웹툰 검색)

  • Lee, ChangMin;Ahn, JeJeong;Kang, DongYeon;Lee, Hyunah
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.503-505
    • /
    • 2019
  • 본 논문에서는 기존 웹툰 장르 검색 시스템의 단점을 보완하기 위해 키워드 기반 유사 장르 검색 시스템을 제안한다. 기존 웹툰의 장르와 키워드를 분석하여 44개의 장르를 설정하고 해당 장르에 적합한 웹툰을 수집한다. 나무위키와 위키피디아 문서로 학습된 Word2Vec모델에 기반하여 계산한 사용자 입력 키워드와 44개의 장르간 유사도로 사용자 입력에 가장 유사한 장르를 찾는다. 유사 장르에 포함되는 웹툰을 결과로 출력하여 사용자가 선호하는 장르의 웹툰을 제시한다. 실험 결과에서는 나무위키에서 '장르'로 검색하여 얻는 작은 크기의 문서 집합에서 Word2Vec을 학습한 모델에서 가장 높은 검색 성능을 보였다.

  • PDF

Korean Language Clustering using Word2Vec (Word2Vec를 이용한 한국어 단어 군집화 기법)

  • Heu, Jee-Uk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.25-30
    • /
    • 2018
  • Recently with the development of Internet technology, a lot of research area such as retrieval and extracting data have getting important for providing the information efficiently and quickly. Especially, the technique of analyzing and finding the semantic similar words for given korean word such as compound words or generated newly is necessary because it is not easy to catch the meaning or semantic about them. To handle of this problem, word clustering is one of the technique which is grouping the similar words of given word. In this paper, we proposed the korean language clustering technique that clusters the similar words by embedding the words using Word2Vec from the given documents.

Word Embedding Analysis for Biomedical Articles (생의학 문헌에 대한 워드 임베딩 적용 및 분석)

  • Choi, Yunsoo;Jeon, Sunhee
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.394-395
    • /
    • 2016
  • 워드 임베딩(word embedding)은 정보검색이나 기계학습에서 단어를 표현하기 위하여 사용되던 기존의 one-hot 벡터 방식의 희소공간 및 단어들 간의 관계정보를 유지할 수 없는 문제를 해결하기 위한 방법이다. 워드 임베딩의 한 방법으로 word2vec은 최근 빠른 학습시간과 높은 효과를 얻을 수 있는 모델로 주목을 받고 있다. word2vec은 수행 시 주어지는 옵션인 벡터차원과 문맥크기에 의해 그 결과 품질이 상이하다. Mikolov는 구글 뉴스 문헌 집합에 대하여 word2vec을 실험하고, 적합한 옵션을 제시하였다. 본 논문에서는 구글 뉴스 문헌 같은 일반 문서가 아닌 생의학 분야에 특화된 문헌에 대하여 word2vec에 대한 다양한 옵션을 실험하고, 생의학 문헌에 적합한 최적의 조건을 분석한다.

Korean Sentiment Analysis Using Natural Network: Based on IKEA Review Data

  • Sim, YuJeong;Yun, Dai Yeol;Hwang, Chi-gon;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2021
  • In this paper, we find a suitable methodology for Korean Sentiment Analysis through a comparative experiment in which methods of embedding and natural network models are learned at the highest accuracy and fastest speed. The embedding method compares word embeddeding and Word2Vec. The model compares and experiments representative neural network models CNN, RNN, LSTM, GRU, Bi-LSTM and Bi-GRU with IKEA review data. Experiments show that Word2Vec and BiGRU had the highest accuracy and second fastest speed with 94.23% accuracy and 42.30 seconds speed. Word2Vec and GRU were found to have the third highest accuracy and fastest speed with 92.53% accuracy and 26.75 seconds speed.

Performance Comparison of Automatic Classification Using Word Embeddings of Book Titles (단행본 서명의 단어 임베딩에 따른 자동분류의 성능 비교)

  • Yong-Gu Lee
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.4
    • /
    • pp.307-327
    • /
    • 2023
  • To analyze the impact of word embedding on book titles, this study utilized word embedding models (Word2vec, GloVe, fastText) to generate embedding vectors from book titles. These vectors were then used as classification features for automatic classification. The classifier utilized the k-nearest neighbors (kNN) algorithm, with the categories for automatic classification based on the DDC (Dewey Decimal Classification) main class 300 assigned by libraries to books. In the automatic classification experiment applying word embeddings to book titles, the Skip-gram architectures of Word2vec and fastText showed better results in the automatic classification performance of the kNN classifier compared to the TF-IDF features. In the optimization of various hyperparameters across the three models, the Skip-gram architecture of the fastText model demonstrated overall good performance. Specifically, better performance was observed when using hierarchical softmax and larger embedding dimensions as hyperparameters in this model. From a performance perspective, fastText can generate embeddings for substrings or subwords using the n-gram method, which has been shown to increase recall. The Skip-gram architecture of the Word2vec model generally showed good performance at low dimensions(size 300) and with small sizes of negative sampling (3 or 5).

Word Sense Disambiguation using Word2Vec (Word2Vec를 이용한 단어 의미 모호성 해소)

  • Kang, Myung Yun;Kim, Bogyum;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.81-84
    • /
    • 2015
  • 자연어 문서에 출현하는 단어에는 중의적 단어가 있으며, 이 단어에서 발생되는 의미 모호성은 대개 그 문맥에 따라 해소된다. 의미 모호성 해소 연구 중, 한국어 단어 공간 모델 방법은 의미 태그 부착 말뭉치를 이용하여 단어의 문맥 정보를 구축하고 이를 이용하여 모호성을 해결하는 연구로서 비교적 좋은 성능을 보였다. 본 연구에서는 Word2Vec를 이용하여 기존 연구인 한국어 단어 공간 모델의 단어 벡터를 효과적으로 축소할 수 있는 방법을 제안한다. 세종 형태 의미 분석 말뭉치로 실험한 결과, 제안한 방법이 기존 성능인 93.99%와 유사한 93.32%의 정확률을 보이면서도 약 7.6배의 속도 향상이 있었다.

  • PDF

Impact of Word Embedding Methods on Performance of Sentiment Analysis with Machine Learning Techniques

  • Park, Hoyeon;Kim, Kyoung-jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.181-188
    • /
    • 2020
  • In this study, we propose a comparative study to confirm the impact of various word embedding techniques on the performance of sentiment analysis. Sentiment analysis is one of opinion mining techniques to identify and extract subjective information from text using natural language processing and can be used to classify the sentiment of product reviews or comments. Since sentiment can be classified as either positive or negative, it can be considered one of the general classification problems. For sentiment analysis, the text must be converted into a language that can be recognized by a computer. Therefore, text such as a word or document is transformed into a vector in natural language processing called word embedding. Various techniques, such as Bag of Words, TF-IDF, and Word2Vec are used as word embedding techniques. Until now, there have not been many studies on word embedding techniques suitable for emotional analysis. In this study, among various word embedding techniques, Bag of Words, TF-IDF, and Word2Vec are used to compare and analyze the performance of movie review sentiment analysis. The research data set for this study is the IMDB data set, which is widely used in text mining. As a result, it was found that the performance of TF-IDF and Bag of Words was superior to that of Word2Vec and TF-IDF performed better than Bag of Words, but the difference was not very significant.