• Title/Summary/Keyword: WILTING POINT

Search Result 30, Processing Time 0.027 seconds

Influence of Short-term Application of Abscisic Acid in Nutrient Solution on Growth and Drought Tolerance of Tomato Seedlings (토마토 육묘과정에서 단기간 ABA처리가 묘소질과 건조내성에 미치는 영향)

  • Kim, Il-Seop;Vu, Ngoc-Thang;Vo, Hoang-Tung;Choi, Ki-Young;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • This study was conducted to evaluate influence of short-term application of abscisic acid (ABA) in nutrient solution on growth and drought tolerance of tomato seedlings. The treatments included four ABA concentrations (0.5, 1, 2, $3mg{\cdot}L^{-1}$) and control (non-treatment) were applied to the nutrient solution in a hydroponic system. On the $5^{th}$ and $10^{th}$ day after growing in the nutrient solution containing ABA, seedlings were transferred to -5 bars of PEG-8000 in a growth chamber to induce water stress. Except for stem diameter and fresh and dry weight of root, there were no statistical differences in other growth parameters among control, 0.5 and $1mg{\cdot}L^{-1}$ of ABA treatments. Seedlings growths were strongly inhibited in nutrient solution containing 2 and $3mg{\cdot}L^{-1}$ of ABA. The root growth such as fresh and dry weigh of root, total root surface area, and average root diameter was slightly enhanced in $1mg{\cdot}L^{-1}$ of ABA treatment. The elevation of ABA concentrations in nutrient solution resulted in the decrease in transpiration rate and increase in stomatal diffusive resistance and leaf temperature of tomato seedlings. The initiations of seedling wilting after treating in -5 bars of PEG were delayed from 10 hrs in control to 30 hrs in ABA applied treatments. Additionally, the high percentages of recovered seedlings were observed in 0.5 and $1mg{\cdot}L^{-1}$ of ABA treatments after re-irrigation. Therefore, short-term application of $1mg{\cdot}L^{-1}$ of ABA in the nutrient solution stimulated the root growth and drought tolerance of tomato seedlings by delaying the start time of wilting point and enhancing the recovery after re-irrigation.

Effects of Compost and Rice Straw Application on Growth of Soybean Plant in Newly Reclaimed Upland Soil (신개간지(新開墾地) 토양(土壤)에서 퇴비(堆肥)와 볏짚시용(施用)이 대두생육(大豆生育)에 미치는 영향(影響))

  • Lee, Myong-Gu;Hwang, Kwang-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.3
    • /
    • pp.199-206
    • /
    • 1982
  • A field experiment was conducted to compare the effects of compost and rice straw application on the growth of soybean, chemical properties and soil microorganism in newly reclaimed silty clay loamy upland soil. Application rates of the arganic materials were 750 Kg, 1,500 Kg and 3,000 Kg/10a in compost, and 340 Kg, 680 Kg and 1,360 Kg/10a in rice straw. The differences of N.P.K. application rates caused by the two different organic materials were balanced by chemical fertilizers of N.P.K. The results can be summarized as follows; 1. The yield of soybean was increased upon compost application, but no significant difference on yield was observed except luxuriant plant growth upon rice straw application. 2. There was highly possitive correlation between concentration of phosphorous, potassium in soybean plant at 71 days after planting and dry weight of grain vs. stem plus bean chaff of harvest plant in compost applied plots, but no correlation was found in rice straw applied plots. 3. In greneral, the soil water contents in organic material applied plots, expecially in plots of rice straw, were higher than in no organic material plots. However, at wilting point, the soil water content in organic material applied plot was lower compare to no organic material plot. 4. The weight of nodules per soybean plant was heavier notwithstanding the fewer number of soil bacteria and fungi in compost application plots than rice straw application plots.

  • PDF

Parameter Regionalization of Semi-Distributed Runoff Model Using Multivariate Statistical Analysis (다변량 통계분석을 이용한 준분포형 유출모형 매개변수 지역화)

  • Lee, Byong-Ju;Jung, Il-Won;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.2
    • /
    • pp.149-160
    • /
    • 2009
  • The objective of this study is to suggest parameter regionalization scheme which is integrated two multivariate statistical methods: principal components analysis(PCA) and hierarchical cluster analysis(HCA). This technique is to apply semi-distributed rainfall-runoff model on ungauged catchments. 7 catchment characteristics (area, mean altitude, mean slope, ratio of forest, water content at saturation, field capacity and wilting point) are estimated for 109 mid-sized sub-basins. The first two components from PCA results account for 82.11% of the total variance in the dataset. Component 1 is related to the location of the catchments relevant to the altitude and Component 2 is connected with the area of these. 103 ungauged catchments are clustered using HCA as the following 6 groups: Goesan 23, Andong 6, Imha 5, Hapcheon 21, Yongdam 4, Seomjin 44. SWAT model is used to simulate runoff and the parameters of the model on the 6 gauged basins are estimated. The model parameters were regionalized for Soyang, Chungju and Daecheong dam basins which are assumed as ungauged ones. The model efficiency coefficients of the simulated inflows for these three dams were at least 0.8. These results also mean that goodness of fit is high to the observed inflows. This research will contribute to estimate and analyze hydrologic components on the ungauged catchments.

Effects of Film Packaging and Gas Composition on the Distribution and Quality of Ginseng Sprouts (새싹인삼의 필름포장과 가스조성이 품질특성에 미치는 영향)

  • Chang, Eun Ha;Lee, Ji Hyun;Choi, Ji Weon;Shin, Il Sheob;Hong, Yoon Pyo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.152-166
    • /
    • 2020
  • Background: Ginsenosides, which have various physiological activities, are known to be abundant in the leaves and roots of ginseng. Ginseng sprouts can be used as a fresh vegetable and roots, stems, and leaves of ginseng can be consumed. This study aimed to investigate the effect of carbon dioxide treatment and the modified atmosphere (MA) packaging method in suppressing quality deterioration during the distribution of ginseng sprouts. Methods and Results: Ginseng sprouts were packed using Styrofoam, barrier film + non gas treatment, barrier film + gas treatment, 15 ㎛ polyamide (PA) double film + non gas treatment, 15 ㎛ PA double film + gas treatment, 25 ㎛ PA film + non gas treatment, or 25 ㎛ PA film + gas treatment. Quality parameters including gas composition, relative humidity, chlorophyll SPAD (Soil Plant Analysis Development) value, firmness, and rate of quality loss in ginseng sprouts were monitored at the following temperatures: 20℃, and 10℃. Ginseng sprouts packaged with 25 ㎛ PA film showed loss in quality because of wilting owing to low relative humidity within the film. Chlorophyll and firmness did not differ between film and gas treatments. The time point at which the combined loss from softening and decay owing to fungal, and bacterial infection and wilt reached 20% was considered the limit of distribution. At 20℃, the packaging not included in the 20% distribution loss rate limit or up to 7 days was 15 ㎛ PA double film + gas treatment. At 10℃, the packaging not included in the 20% distribution loss rate limit for up to 18 days were barrier film + gas treatment and 15 ㎛ PA double film + gas treatment. Conclusions: The film packaging suitable for the distribution of ginseng sprouts was found to be the barrier film and PA film with low gas permeability and maintaining hygroscopicity at 95% relative humidity. To prevent the loss in quality of ginseng sprouts, gas treatment (8% of O2 and 18% of CO2) in the film was found to be more suitable than no gas treatment for inhibition of decay.

Changes in Transpiration Rates and Growth of Cucumber and Tomato Scions and Rootstocks Grown Under Different Light Intensity Conditions in a Closed Transplant Production System (식물공장형육묘시스템 내 광량에 따른 오이와 토마토 접수 및 대목의 증발산량 및 생육 변화)

  • Park, Seon Woo;An, Sewoong;Kwack, Yurina
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.399-405
    • /
    • 2020
  • Recently, it is difficult to produce uniform scions and rootstocks with high quality in a greenhouse due to weather extremes. The closed transplant production system is useful for producing scions and rootstocks with desirable morphological characteristics by environment control regardless of weather outside. In this study, we investigated transpiration rates and growth of cucumber and tomato scions and rootstocks grown under different light intensity conditions for precise irrigation control in a closed transplant production system. Hanging system to measure continuously the weight of plug tray consisting of seedlings and substrate with load-cell was installed in each growing bed. Using this system, we confirmed initial wilting point of cucumber and tomato seedlings, and conducted subirrigation when moisture content of substrate was not below 50%. The irrigation time of cucumber scions and rootstocks were 7 and 6 days after sowing, respectively. In tomato scions and rootstocks grown under PPF (photosynthetic photon flux) 300 μmol·m-2·s-1, the irrigation time were 5, 8, 11, and 13 days after sowing. Increasing light intensity increased transpiration rates and differences of transpiration rates by light intensity was higher in tomato seedlings. The growth of cucumber and tomato seedlings was promoted by increasing light intensity, especially, hypocotyl elongation and stem thickening was affected by light intensity. Cumulative transpiration rate of plug tray in cucumber and tomato seedlings was increased by increasing light intensity, and daily transpiration rate per seedling was regressed by 1st-order linear equation with high correlation coefficient. Estimation of transpiration rates by weighing continuously plug tray of vegetable seedlings can be useful to control more accurately irrigation schedule in a closed transplant production system.

Effect of Chinese Cabbage Growth and Change of Nutrient and Soil Water on Application of Super Water Absorbent Polymer (초고흡수성 폴리머(CPAM-AS-hyd) 처리가 토양수분, 배추생육 및 양분 흡수에 미치는 영향)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Moon, Sung-Pil;Kim, Moo-Key
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.5
    • /
    • pp.350-357
    • /
    • 2001
  • This study was performed to evaluate an effect of soil water retention and chinese cabbage growth on application of super water absorbent(CPAM-AS-hyd). In seedling experiments, the CPAM-AS-hyd application rates were 0, 5 and 10kg/10a in bed soil of experimental field. The emergence percentage of chinese cabbage was increased by 9% with application of CPAM-AS-hyd otherwise emergence rates was delayed by 1 day. Water content in soil with CPAM-AS-hyd(10kg/10a) was 27.6%(v/v) at 10days after irrigation and that of control was 20.7%. The CPAM-AS-hyd application caused to alleviate wilting point by 5 days. The content of NO3-N in bed soil was increased with CPAM-AS-hyd application. In the field experiments, as the CPAM-AS-hyd application rates were 5kg/10a and 10kg $10a^{-1}$, the irrigation amounts applied during the growth periods were 1.87 ton, 1.65 ton and 1.53 ton at-0.2bar irrigation frequence and 1.38 ton, 1.25 ton and 1.15 ton at -0.5bar for growth period control, in the CPAM-AS-hyd of 5kg $10a^{-1}$ and CPAM-AS-hyd of 10kg $10a^{-1}$ plot, respectively. The CPAM-AS-hyd application caused to increase yield of chinese cabbage by 9~34% as compared to the control. The contents of $NH_4-N$ and $NO_3-N$ in soil were decreased with the CPAM-AS-hyd application in 10 days after transplanting of chinese cabbage, but the contents of those in soil were increased with the CPAM-AS-hyd application as compared to the control in 20 days after transplanting. The T-N, CaO, MgO and $K_2O$ contents in chinese cabbage increased due to the CPAM-AS-hyd application however $P_2O_5$ content was similar to the control.

  • PDF

Effects of Environmental Factors on Growth and Nitrogen Fixation Activity of Autumn Olive (Elaeognus umbellata) Seedlings (보리수나무 유식물의 생장과 질소고정 활성에 대한 환경요인의 영향)

  • 송승달
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.387-394
    • /
    • 1994
  • Effects of environmental factors of light, temperature, nitrogen sources and water stress were analyzed quantitatively on the nodule formation and nitrogen fixation activity of autumn olive plant (Elaeagnu$ umbellala Thunb.) during the seedling growth. Seedlings showed the maximum nitrogenase activity of $72.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ in the early nodulation stage. The relative growth rate and T/R ratio changed from $1.60%{\cdot}d^{-1}$ and 1.12 in the earlier stage to $3.75%{\cdot}d^{-1}$ and 2.31 in the later stage, respectively. light conditions of 20-25, 1015 and 4-6% resulted in decreases of 41, 54 and 71% of the nitrogenase activity, respectively. Nodules incubated in 15, 20, 25 and $30^{\circ}C$ showed the activities of 5.4, 24.7, 51.6 and $58.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ respectively. Pretreatment with low temperature ($15^{\circ}C$) followed incubation at $30^{\circ}C$ attained higher nitrogenase activity ($66.5\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$) than that with higher temperature ($35^{\circ}C$). The oxygen pressure above 16 kPa is necessary for saturation of the nodule activity, but the activity was inhibited severely by physical impact such as the exision or isolation of nodules from the root. The relative activities of early nodules grown in pH 5.5, 6.5 and 8.0 were 89, 100 and 40% and those grown in 1 and 3 mM of $NO_3\;and\;NH_4$ were 6, 1 and 68, 50%, respectively. Watering levels of 20, 50 and 100 mL during the seedling growth resulted in 35, 120 and 8 mg of nodule formation and 33.6, 58.4 and $8.4\;\mu\textrm{M}\;C_2H_4{\cdot}g\;fr\;wt\;nodule^{-1}{\cdot}h^{-1}$ of the nitrogenase activity, respectively. Water stress with 86% decrease of soil water content caused temporary wilting point of leaf and a complete disappearance of nitrogenase activity of nodules, though the water content and transpiration rate in plant were reduced to 90 and 53%, respectively.tively.

  • PDF

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.

Physiological Responses of Green Roof Plants to Drought Stress (건조스트레스에 따른 옥상녹화 식물의 생리적 반응)

  • Park, Seong-Sik;Choi, Jaehyuck;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.51-59
    • /
    • 2017
  • This study evaluated the drought tolerance of Liriope platyphylla F.T.Wang & T.Tang, Dendranthema zawadskii var. lucidum (Nakai) J.H.Park, Hosta longipes (Franch. & Sav.) Matsum., Sedum sarmentosum Bunge and Zoysia japonica Steud. for an extensive green roof. In order to assess drought tolerance of green roof plants, several criteria were measured such as volumetric water content, leaf and soil moisture potential, chlorophyll a and b, chlorophyll fluorescence, photosynthesis, stomatal conductance, transpiration rate and antioxidants. The results of the drought tolerance measurement of green roof plants focused on the gradually withering of plants from lack of volumetric water content. D. zawadskii was the first to show an initial wilting point, followed by Z. japonica, H. longipes and L. platyphylla in order while S. sarmentosum showed no withering. It was concluded that H. longipes, L. platyphylla and S. sarmentosum were highly drought tolerant plants able to survive over three weeks. Furthermore, chlorophyll a and b were divided into two types: Type I, which kept regular content from the beginning to the middle of the period and suddenly declined, like H. longipes and Z. japonica; and Type II, which showed low content at the beginning, sharply increased at the middle stage and decreased, like D. zawadskii, L. platyphylla and S. sarmentosum. Volumetric water content and the amount of evapotranspiration consistently declined in all plant species. The analysis of chlorophyll fluorescence results that S. sarmentosum, which had relatively high drought tolerance, was the last to decline, while Z. japonica and S. sarmentosum withered after rapid reduction. At first, photosynthesis, stomatal conductance and transpiration rate showed high activity, but they lowered as the plant body closed stomata owing to the decrease in volumetric water content. Measuring antioxidants showed that when drought stress increased, the amount of antioxidants grew as well. However, when high moisture stress was maintained, this compound was continuously consumed. Therefore, the variation of antioxidants was considered possible for use as one of the indicators of drought tolerance evaluation.

A Study on Determination of Consumptive Use Needed in the Vegetable Plots for the Prevention of Drought Damage (고등채소의 한해를 방지하기 위한 포장 용수량 결정에 관한연구)

  • 최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.2
    • /
    • pp.2949-2967
    • /
    • 1973
  • The purpose of this study is to find out and determine the minimum consumptive use of water for Korean cabbage and turmp, so that the minimum water requirement can be secured always for a stable cultivation of these vegetables regardless of weather conditions. The experiment was conducted in two periods; first one from May to July and second one from August to October, each experiment with two varieties of cabbage and two varieties of radish with 2 replicants and 15 treatments. The results found from the above are briefly as follows: 1. Since the mean soil moisture equivalent 64 days after the treatment was 28.5% and the soil moisture content at the time was 2.67% which is far less than that of the wilting point, the crop seemed to be extremely caused by a drought. 2. The rate of 51 days after the seeding, soil moisture content of plot No.2 where irrigation has been continuous was the highest or 21.3%, whereas the plot No.14 without irrigations was 11.2% and the lowest. Therefore, the soil moisture content for the minimum qrowth seemed to be 20%. 3. The consumptive coefficient of Blaney and Criddle on cabbage in two periods were K=1.14 and 0.97 respectively, and on radish in two periods were K=1.06 and 0.86 respectively, thus, cabbage was higher than radish. The consumptive coefficient in the first experiment (May-July) was 0.17 to 0.20 higher than the 2nd experiment(August-October). 4. Nomally, cabbage and radish germinate within one week, however, the germination ot these crops which were treated with a suspended water supply from the beginning took two full weeks. 5. When it elapsed 30 days after seeding, the conditions in plot 1,2 and 3 were fairly good however, the crops in the plops other than these showed a withering and the leaves were withered and changed into high green due to an extrem drought. Though it was about same at the beginning, the drought damage on cabbage was worse than that on radish period, and the reasos for this appears in the latter that the roots are grown too deep. 6. The cabbage showed a high affinity between treated plots and varieties. Consequently, it can be said that cabbage is very suseptive to drought damage, and the yield showed a difference of 35% to 56% depending on the selection oe varieties. 7. The radish also showed a high affinity between the treated plots, however, almost us affinity existed between varieties. Therfore, the yield of radish largely depends on the extent of drought, and the selection of variety does not affect at all. 8. The normal consumptive use on cabbage is $0.62{\ell}/sec$, while that on radish is $0.64{\ell}/sec$, and the minimum optimum water requirement that was obtained in this study is $4,000cc/day/m^3$ or $0.462{\ell}/sec/ha$.

  • PDF