온라인 소셜 네트워크는 정보전파의 용이성 및 파급 영향력이 높지만 이를 악의적으로 활용하기 위한 스패머들이 다수 활동 중이다. 이러한 스패머를 식별하기 위한 스팸 탐지기법 연구가 다양한 분야에서 이루어지고 있지만 스패머들 또한 스팸 내용이나 스팸링크, 활동 주기 등의 특성을 변경하여 탐지를 피하고 있다. 하지만 다른 특성들과 달리 온라인 소셜 네트워크의 고유 네트워크 특성인 링크 특성은 쉽게 변화시키는 어렵다. 따라서 본 논문에서는 이러한 네트워크의 구조적인 특성을 활용하여 스패머를 일반사용자와 구분하는 방법을 제시한다. 즉 일반사용자 노드가 주변 노드와 비슷한 네트워크 특성을 갖는 점에 주목하여 인접 노드를 활용한 재귀적인 구조적 특성을 생성하여 활용함으로써 스패머의 식별확률을 높이고 있다. 이를 검증하기 위한 실험은 트위터의 실제 데이터셋을 Weka 프로그램에 탑재된 랜덤포레스트 알고리즘을 활용하여 측정하였으며, 재귀적인 특성을 활용하지 않는 방법과 기존 제안 알고리즘에 비해 탐지율이 0.82에서 0.90으로 향상됨으로써 제안하는 방법이 스패머를 탐지하는데 효과적임을 제시하고 있다.
Purpose The purpose of this study is to develop a prediction model and decision rules for the elderly's suicidal ideation based on the Korean Welfare Panel survey data. By utilizing this data, we obtained many decision rules to predict the elderly's suicide ideation. Design/methodology/approach This study used classification analysis to derive decision rules to predict on the basis of decision tree technique. Weka 3.8 is used as the data mining tool in this study. The decision tree algorithm uses J48, also known as C4.5. In addition, 66.6% of the total data was divided into learning data and verification data. We considered all possible variables based on previous studies in predicting suicidal ideation of the elderly. Finally, 99 variables including the target variable were used. Classification analysis was performed by introducing sampling technique through backward elimination and data balancing. Findings As a result, there were significant differences between the data sets. The selected data sets have different, various decision tree and several rules. Based on the decision tree method, we derived the rules for suicide prevention. The decision tree derives not only the rules for the suicidal ideation of the depressed group, but also the rules for the suicidal ideation of the non-depressed group. In addition, in developing the predictive model, the problem of over-fitting due to the data imbalance phenomenon was directly identified through the application of data balancing. We could conclude that it is necessary to balance the data on the target variables in order to perform the correct classification analysis without over-fitting. In addition, although data balancing is applied, it is shown that performance is not inferior in prediction rate when compared with a biased prediction model.
International Journal of Computer Science & Network Security
/
제22권10호
/
pp.374-388
/
2022
Cloud computing has been one of the most critical technology in the last few decades. It has been invented for several purposes as an example meeting the user requirements and is to satisfy the needs of the user in simple ways. Since cloud computing has been invented, it had followed the traditional approaches in elasticity, which is the key characteristic of cloud computing. Elasticity is that feature in cloud computing which is seeking to meet the needs of the user's with no interruption at run time. There are traditional approaches to do elasticity which have been conducted for several years and have been done with different modelling of mathematical. Even though mathematical modellings have done a forward step in meeting the user's needs, there is still a lack in the optimisation of elasticity. To optimise the elasticity in the cloud, it could be better to benefit of Machine Learning algorithms to predict upcoming workloads and assign them to the scheduling algorithm which would achieve an excellent provision of the cloud services and would improve the Quality of Service (QoS) and save power consumption. Therefore, this paper aims to investigate the use of machine learning techniques in order to predict the workload of Physical Hosts (PH) on the cloud and their energy consumption. The environment of the cloud will be the school of computing cloud testbed (SoC) which will host the experiments. The experiments will take on real applications with different behaviours, by changing workloads over time. The results of the experiments demonstrate that our machine learning techniques used in scheduling algorithm is able to predict the workload of physical hosts (CPU utilisation) and that would contribute to reducing power consumption by scheduling the upcoming virtual machines to the lowest CPU utilisation in the environment of physical hosts. Additionally, there are a number of tools, which are used and explored in this paper, such as the WEKA tool to train the real data to explore Machine learning algorithms and the Zabbix tool to monitor the power consumption before and after scheduling the virtual machines to physical hosts. Moreover, the methodology of the paper is the agile approach that helps us in achieving our solution and managing our paper effectively.
이 연구의 목적은 국민건강영양조사 2012년 자료 중 40세 이상 성인의 대사증후군 유병 여부를 예측에 영향을 미치는 변수를 확인하고 이를 예측하는 모형 개발하는데 있다. 선행연구를 통해 모델 생성에 필요한 투입변수를 선정하였다. 연구결과 투입변수 중 사회경제적 요인이 상위 순위에 해당하였으며, 건강행위 요인의 경우 하위 순위로 나타났다. 또한, 최종 예측모형은 의사결정나무 (Decision Tree)일 경우 90. 32%의 가장 높은 예측력을 나타내고 있었다. 이 연구의 결과는 다음과 같은 시사점을 나타낸다. 먼저, 대사증후군에 대한 예방 및 관리에 있어 건강행위에 대한 접근과 함께 사회경제적 요인에 대한 접근도 병행을 고려해야 한다. 또한, 의사결정나무 알고리즘의 경우 결과해석의 용이성이 있어 보건의료분야에서 많이 사용되며, 선행연구의 결과와 마찬가지로 높은 예측정확도를 나타내고 있다.
This study was to compare the effectiveness and validity of various data-mining algorithm for Sasang type diagnostic test. We compared the sensitivity and specificity index of nine attribute selection and eleven class classification algorithms with 31 data-set characterizing Sasang typology and 10-fold validation methods installed in Waikato Environment Knowledge Analysis (WEKA). The highest classification validity score can be acquired as follows; 69.9 as Percentage Correctly Predicted index with Naive Bayes Classifier, 80 as sensitivity index with LWL/Tae-Eum type, 93.5 as specificity index with Naive Bayes Classifier/So-Eum type. The classification algorithm with highest PCP index of 69.62 after attribute selection was Naive Bayes Classifier. In this study we can find that the best-fit algorithm for traditional medicine is case sensitive and that characteristics of clinical circumstances, and data-mining algorithms and study purpose should be considered to get the highest validity even with the well defined data sets. It is also confirmed that we can't find one-fits-all algorithm and there should be many studies with trials and errors. This study will serve as a pivotal foundation for the development of medical instruments for Pattern Identification and Sasang type diagnosis on the basis of traditional Korean Medicine.
자연림은 산림의 조성 과 보육 등에 인공적인 사람의 힘이 가해지지 않은 자연 상태의 산림이다. 반면 인공림은 사람이 조성 및 보육관리 하는 숲으로 목재생산, 자연재해 예방, 방풍 등의 목적을 가지는 산림이다. 인공림은 목재생산 등 인간이 목적을 가지고 관리하여 단위 면적당 더 많은 목재를 생산할 수 있는 경제적 장점도 가지고 있다. 자연림과 인공림의 구분은 산림 형태의 관리 방법과 목정이 상이하여 산림조사에서 기본적으로 조사하는 요소이며, 자연림과 인공림의 구분은 항공사진 판독과 현지조사 등의 절차를 통해 이루어진다. 본 연구에서는 자연림과 인공림의 분류에 KOMPSAT-3, 3A, 5 위성 영상데이터에 인공신경망(Artificial Neural Network: ANN)을 적용하여 자연림과 인공림의 분류도를 만들고, 산림청의 1/5,000임상도의 자연림과 인공림 분류도와 비교하여 평가하였다. 인공신경망을 이용한 산림의 자연림과 인공림 구분의 연구를 진행한 결과, 1/5,000 임상도와 비교했을 때, 학습결과 분류 전체 정확도는 77.03%이다. 영상의 획득 시기와 산림의 침엽수와 활엽수 등 기타요인이 인공신경망을 이용한 산림의 인공림과 자연림의 구분에 많은 영향을 미치는 것을 확인하였다.
최근 지능적이고 고도화된 사이버 공격은 악성코드가 포함된 파일을 이용하여 공공기관의 전산망을 공격하거나 정보를 유출하는 공격으로 그 피해가 커지고 있다. 다양한 정보 보호시스템이 구축된 공공기관에서도 기존의 시그니처 기반이나 정적 분석을 기반으로 하는 악성코드 및 랜섬웨어 파일 탐지하는 방식을 사용하는 경우는 알려진 공격은 탐지가 가능하나 알려지지 않은 동적 및 암호화 공격에 대해서는 취약하다. 본 연구에서 제안하는 탐지 방안은 공공기관에서 실제로 사용하는 정보보호시스템 중 악성코드 및 랜섬웨어를 탐지할 수 있는 시스템의 탐지 결과 데이터를 추출한 후 결합하여 여러 가지 속성을 도출해 내고, 머신러닝 분류 알고리즘을 통해 도출한 속성들이 어떻게 분류되고 어떤 속성이 분류 결과와 정확도 향상에 중대한 영향을 미치는지 실험을 통해 결과를 도출한다. 본 논문의 실험 결과에서는 특정 속성이 포함된 경우와 포함되지 않은 경우 알고리즘마다 상이하지만, 특정 속성이 포함된 학습에서는 정확도가 높아지는 결과를 보였으며 추후 정보보호시스템의 랜섬웨어 파일 및 이상행위 탐지 알고리즘 제작 시 속성 선택에 활용할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.