• Title/Summary/Keyword: WC-Co carbide

Search Result 97, Processing Time 0.025 seconds

Determination of Dynamic Crack Initiation Toughness Using Instrumented Charpy Impact Test in WC-Co Alloy (계장화 샬피충격시험을 이용한 WC-Co 초경합금의 동적 균열개시인성치 결정)

  • 이억섭;박원구;홍성경;윤경수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.688-696
    • /
    • 1995
  • Cemented carbides, best known for their superior mechanical properties such as high strength, high hardness and high wear resistance, have a wide range of industrial applications including metal working tools, mining tools, and wear resistance components. The cobalt has been used as a binder in the WC-based hard composites due to its outstanding wetting and adhesion characteristics even though its expensiveness. Therefore many studies attempted to find a better substitute for cobalt as binder to decrease production costs. This investigation is a pre-step to study dynamic fracture characteristic evaluation of a WC-Co hardmetal were evaluated by using the instrumented Charpy impact testing procedures. It was found that the dynamic characteristics of used strain amplifier were very important experimental factors to extract valid dynamic fracturing data in WC-Co specimens. It was suggested by showing some experimental examples that when we wished to evaluate dynamic fracture toughness for cemented carbide composites by using the instrumented Charpy impact testing procedure, a careful attention must be given to obtain valid results.

Evaluation of Mechanical Properties and Microstructural Behavior of Sintered WC-7.5wt%Co and WC-12wt%Co Cemented Carbides

  • Raihanuzzaman, Rumman Md.;Song, Jun-U;Tak, Byeong-Jin;Hong, Hyeon-Seon;Hong, Sun-Jik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • WC-Co and other similar cemented carbides have been widely used as hard materials in industrial cutting tools and as mould metals; and a number of techniques have been applied to improve its microstructural characteristics, hardness and ear resistance. Cobalt is used primarily to facilitate liquid phase sintering and acts as a matrix, i.e. a cementing phase between WC grains. A uniform distribution of metal phase in a ceramic is beneficial for improved mechanical properties of the composite. WC-Co, starting from initial powders, is vastly used for a variety of machining, cutting, drilling, and other applications because of its unique combination of high strength, high hardness, high toughness, and moderate modulus of elasticity, especially with fine grained WC and finely distributed cobalt. In this study, that started with two different compositions of initial powders, WC-7.5wt%Co and WC-12wt%Co with initial powder size being 1~3 ${\mu}m$, magnetic pulsed compaction followed by subsequent vacuum sintering were carried out to produce consolidated preforms. Magnetic Pulsed Compaction (MPC), a very short duration (~600 ${\mu}s$), high pressure (~4 Gpa), high-density preform molding method was used with varied pressure between 0.5 and 3.0 Gpa, in order to reach an initial high density that would help improve the sintering behavior. For both compositions and varied MPC pressure, before and after sintering, changes in microstructural behavior and mechanical properties were analyzed. With proper combination of MPC pressure and sintering, samples were obtained with better mechanical properties, densification and microstructural behavior, and considerably improved than other conventional processes.

  • PDF

The Characteristic of Diamond Thin Films on WC-Co by RF PACVD (RF PACVD법에 의한 WC-Co에 성장된 다이아몬드 박막의 특성)

  • Lee, S.;Kim, D.I.;Yoon, J.H.;Park, S.H.;Kim, Y.B.;Kim, B.Y.;Kang, D.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1699-1701
    • /
    • 1999
  • We prepared diamond thin films on WC-Co substrate in $H_2-CH_4-O_2$ gas mixture using 13.56MHz RF PACVD. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy were used to analyze the nature of thin film. and Rockwell test to analyze the adhesion between thin film and substrate. The good diamond quality and adhesion was appeared with cemented tungsten carbide substrate treated with oxygen plasma.

  • PDF

Selective Laser Sintering of WC-Co Mixture for Rapid Tooling (쾌속 금형 제작을 위한 텅스텐 카바이드와 코발트 혼합물의 선택적 레이저 소결)

  • Kim K. H.;Beaman Joseph J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.187-194
    • /
    • 2002
  • This paper describes the experimental results on direct selective laser sintering of WC-Co mixture for rapid tooling. The experiments were carried out within an air, argon and nitrogen atmosphere. Coupons of single layer were sintered at various laser powers, scanning speeds and scan spacings. As the energy density (energy per unit scanned area) is increased, the thickness of coupons is increased. The main problem took place during sintering within an air atmosphere was severe oxidation of WC-Co mixture. As the laser power is increased and/or scanning speed is decreased, more severe oxidation occurred. Within an argon and nitrogen atmosphere the oxidation is reduced significantly. Experiments on multi-layer sintering were also carried out.

  • PDF

Research on Two Sintered Techniques of Nanometer WC-Co Powder

  • Sun, Lan;Jia, Chengchang;Tang, Hua
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.529-530
    • /
    • 2006
  • This paper concerned with SPS (spark plasma sintering), hot pressing of sinter nanometer WC-Co powder and discussed the density, hardness, microstructures and grain sizes of the alloys sintered. The results showed that the two sintered techniques could produce high density alloys and play well on the grain growth, but SPS could lower the sintering temperature and shorten sintering time. Besides, the hardness of the sintered cemented alloys that was dependent on the grain size and densification could also be improved.

  • PDF

Characteristics of Ir-Re Thin Films on WC for Lens Glass Molding by Ion Beam Assisted DC Magnetron Sputtering (Ion beam assisted DC magnetron sputtering에 대한 렌즈 유리 성형용 WC 합금의 Ir-Re 박막 특성)

  • Park, Jong-Seok;Park, Burm-Su;Kang, Sang-Do;Yang, Kook-Hyun;Lee, Kyung-Ku;Lee, Doh-Jae;Lee, Kwang-Min
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.88-93
    • /
    • 2008
  • Ir-Re thin films with Ti interlayer were deposited onto the tungsten carbide substrate by ion beam assisted DC magnetron sputtering. The Ir-Re films were prepared with targets of having two atomic percent of 7:3 and 5:5. The microstructure and surface analysis of the specimen were conducted by using SEM, XRD and AFM. Mechanical properties such as hardness and adhesion strength of Ir-Re thin film also were examined. The interlayer of pure titanium was formed with 100 nm thickness. The film growth of Ir-30at.%Re was faster than that of Ir-50at.%Re in the same deposition conditions. Ir-Re thin films consisted of dense and columnar structure irrespective of the different target compositions. The values of hardness and adhesion strength of Ir-30at.%Re thin film coated on WC substrate were higher than those of Ir-50at.%Re thin film.

Coating of Cobalt Over Tungsten Carbide Powder by Wet Chemical Reduction Method

  • Hong, Hyun-Seon;Yoon, Jin-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.93-96
    • /
    • 2014
  • Cobalt coated tungsten carbide-cobalt composite powder has been prepared through wet chemical reduction method. The cobalt sulfate solution was converted to the cobalt chloride then the cobalt hydroxide. The tungsten carbide powders were added in to the cobalt hydroxide, the cobalt hydroxide was reduced and coated over tungsten carbide powder using hypo-phosphorous acid. Both the cobalt and the tungsten carbide phase peaks were evident in the tungsten carbide-cobalt composite powder by X-ray diffraction. The average particle size measured via scanning electron microscope, particle size analysis was around 380 nm and the thickness of coated cobalt was determined to be 30~40 nm by transmission electron microscopy.

Effect of Methane Gases on the Properties of Diamond Thin Films Synthesized by MPCVD (MPCVD법으로 증착된 다이아몬드 박막 특성에 미치는 메탄가스의 영향)

  • Song, Jin-Soo;Nam, Tae-Woon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.229-233
    • /
    • 2011
  • Diamond thin films were deposited on pretreated Co cemented tungsten carbide (WC-6%Co) inserts as substrate by microwave plasma chemical vapor deposition (MPCVD) system, equipped with a 915MHz, 30kW generator for generating a large-size plasma. The substrates were pretreated with two solutions Murakami solution $[KOH:K_3Fe(CN)_6:H_2O]$ and nitric solution $[HNO_3:H_2O]$ to etch, WC and Co at cemented carbide substrates, respectively. The deposition experiments were performed at an input power of 10 kW and in a total pressure of 100 torr. The influence of various $CH_4$ contents on the crystallinity and morphology of the diamond films deposited in MPCVD was investigated using scanning electron microscopy (SEM) and Raman spectroscopy. The diamond film synthesized by the $CH_4$ plasma shows a triangle-faceted (111) diamond. As $CH_4$ contents was increased, the thickness of diamond films increased and the faceted planes disappeared. Finally, Faceted diamond changed into nano-crystalline diamond with random crystallinity.

Effects of Mn and C Addition on the Wear Resistance for the Recycled WC Dispersed Fe-base Hardfacing Weld (재생 WC 분산형 Fe계 하드페이싱 용접재료의 마모저항성에 미치는 Mn과 C 첨가의 영향)

  • Kang, Nam-hyun;Chae, Hyun-byung;Kim, Jun-ki;Choi, Jong-ha;Kim, Jeong-han
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.839-845
    • /
    • 2003
  • The abrasion and impact wear resistance were investigated on the hardfacing weld dispersed with the recycled hard metal(HM). The HM was composed of the tungsten carbide(WC) reinforced metal matrix composite. The cored wire filled with the 25-35wt.% HM and 2-8wt.% of the alloying element, Fe-75Mn- 7C(FeMnC), was used for the gas metal arc(GMA) welding. By using the cored wire of the 25wt.% HM and FeMnC addition, the weld showed mostly constant wear loss for the abrasion as a function of the FeMnC content. This was due to the insufficient amount of the tungsten carbide formed during the GMA welding. The FeMnC addition to the 35wt.% HM did not improve the abrasion wear property since the amount of the tungsten carbide formed was decreased with respect to the FeMnC amount. The 6wt.% FeMnC addition to the 35wt.% HM exhibited the better impact wear resistance than the hardfacing weld by 40wt.% HM.