• 제목/요약/키워드: WC-Co carbide

검색결과 97건 처리시간 0.027초

EFFECTS OF CO CONTENT AND WC GRAIN SIZE ON WEAR OF WC CEMENTED CARBIDE

  • Saitoh, Hiroyuki;Iwabuchi, Akira;Shimizu, Tomoharu
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.213-214
    • /
    • 2002
  • WC cemented carbide are used as many die material to improve abration resistance. Mechanical properties of the cemented carbide were influenced by Co content and WC grain size. In this study, effects of Co content and WC grain size of WC cemented carbide on wear were examied. We prepared 13 cemented carbides with different Co content and WC grain size. Wear test was carried out against S45C under dry condition at 98N and 232mm/s. From the results, we found that wear increased with both Co content and WC grain size. Specific wear rate was range $10^{-7}mm^3/Nm$.

  • PDF

Oxidation Behavior of WC-TiC-TaC Binderless Cemented Carbide under Low Partial Pressure of Oxygen

  • Uchiyama, Yasuo;Ueno, Shuji;Sano, Hideaki;Tanaka, Hiroki;Nakahara, Kenji;Sakaguchi, Shigeya;Nakano, Osamu
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.355-356
    • /
    • 2006
  • WC-TiC-TaC binderless cemented carbide was oxidized under low partial pressure of oxygen (50ppm) at 873K for 1 to 20 h. Surface roughness was measured using atomic force microscope, and effect of TiC amount on oxidation behavior of the carbide was investigated. WC phase was oxidized more easily than WC-TiC-TaC solid solution phase. With an increase in TiC amount, WC-TiC-TaC phase increased and the oxidation resistance of the carbide increased.

  • PDF

텅스텐염의 액상법을 통한 초미립 WC-Co 분말의 합성 (Synthesis of Nano-sized Tungsten Carbide - Cobalt Powder by Liquid Phase Method of Tungstate)

  • 김종훈;박용호;하국현
    • 한국분말재료학회지
    • /
    • 제18권4호
    • /
    • pp.332-339
    • /
    • 2011
  • Cemented tungsten carbide has been used in cutting tools and die materials, and is an important industrial material. When the particle size is reduced to ultrafine, the hardness and other mechanical properties are improved remarkably. Ultrafine cemented carbide with high toughness and hardness is now widely used. The objective of this study is synthesis of nanostructured WC-Co powders by liquid phase method of tungstate. The precursor powders were obtained by freezen-drying of aqueous solution of soluble salts, such as ammonium metatungstate, cobalt nitrate. the final compositions were WC-10Co. In the case of liquid phase method, it can be observed synthesis of WC-10Co. The properties of powder produced at various temperature, were estimated from the SEM, BET and C/S analyser.

초경소재 선정을 위한 고속가공의 엔드밀 성능 평가 (Performance Evaluation on the Endmill of High Speed Machining for Selection of Tungsten Carbide (WC-Co) Material)

  • 권동희;김정석;김민욱;정영근;강명창
    • 한국분말재료학회지
    • /
    • 제15권5호
    • /
    • pp.359-364
    • /
    • 2008
  • To satisfy the demand of higher cutting performance, mechanical properties with tungsten carbide (WC-Co) tool materials were investigated. Hardness and transverse rupture strength with WC grain size, Co content and density were measured. Compared to H, K, and S manufacture maker as tungsten carbide (WC-Co) tool materials were used for high-speed machining of end-milling operation. The three tungsten carbide (WC-Co) tool materials were evaluated by cutting of STD 11 cold-worked die steel (HRC25) under high-speed cutting condition. Also, tool life was obtained from measuring flank wear by CCD wear measuring system. Tool dynamometer was used to measure cutting force. The cutting force and tool wear are discussed along with tool material characteristics. Consequently, the end-mill of K, H manufacture maker showed higher wear-resistance due to its higher hardness, while the S maker endmill tool showed better performance for high metal removal.

On the Solubility of Chromium in Cubic Carbides in WC-Co

  • Norgren, Susanne;Kusoffsky, Alexandra;Elfwing, Mattias;Eriksson, Anders
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.338-339
    • /
    • 2006
  • The solubility of Cr in cubic carbides in the systems WC-Co-TaC and WC-Co-ZrC has been determined using equilibrium samples. Thermodynamic calculations were used to design the alloys through extrapolations of Gibbs energy expressions. The alloys were designed to have a microstructure containing the following phases: WC, liquid, $M_7C_3$, graphite and cubic carbide. The alloys were investigated using scanning electron microscopy and analyzed using energy-dispersive X-ray spectrometry. The present work shows how the Cr solubility depends on which cubic carbide former that is present. The WC-Co-Cr-Zr alloy has no detectable amount of Cr whereas the WC-Co-Cr-Ta alloy has 12% Cr in the cubic carbide.

  • PDF

Computational and Experimental Study of Grain Growth in WC-Co and WC-VC-Co Cemented Carbides

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제19권11호
    • /
    • pp.588-595
    • /
    • 2009
  • The knowledge of grain growth of carbide particles is very important for manufacturing micrograined cemented carbides. In the present study, continuous and discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides is investigated using the Monte Carlo computer simulation technique. The Ostwald ripening process (solution/re-precipitation) and the grain boundary migration process are assumed in the simulation as the grain growth mechanism. The effects of liquid phase fraction, grain boundary energy and implanted coarse grain are examined. At higher liquid phase content, mass transfer via solid/liquid interfaces plays a major role in grain growth. Growth rate of the implanted grain was higher than that of the matrix grains through solution/re-precipitation and coalescence with neighboring grains. The results of these simulations qualitatively agree with experimental ones and suggest that distribution of liquid phase and carbide particle/carbide grain boundary energy as well as contamination by coarse grain are important factors controlling discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides. The contamination by coarse grains must by avoided in the manufacturing process of fine grain cemented carbides, especially with low Co.

The Enhancement of Corrosion Resistance for WC-Co by Ion Beam Mixed Silicon Carbide Coating

  • 여순목;김동진;박재원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.101-101
    • /
    • 2010
  • A strong adhesion of a silicon carbide (SiC) coating on a WC-Co substrate was achieved through an ion beam mixing technique and the corrosion resistance of the SiC coated WC-Co was investigated by means of a potentiodynamic electrochemical test. In the case of 1 M NaOH solution, a corrosion current density for a SiC coated WC-Co with a heat treatment at $500^{\circ}C$ displays about 50 times lower than that for the as-received WC-Co. However, in the case of 0.5 M H2SO4 solution, a corrosion current density for a SiC coated WC-Co displays about 3 times lower than that for as-received WC-Co. We discussed the physical reasons for the changes of the corrosion current densities at the different electrolytes.

  • PDF

Enhanced Corrosion Resistance of WC-Co with an Ion Beam Mixed Silicon Carbide Coating

  • 여순목;박재원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.193-193
    • /
    • 2011
  • Strong adhesion of a silicon carbide (SiC) coating to a WC-Co substrate was achieved through an ion beam mixing technique and the corrosion resistance of the SiC coated WC-Co was investigated by means of a potentiodynamic electrochemical test. In a 1 M NaOH solution, the corrosion current density of SiC-coated WC-Co after heat treatment at 500$^{\circ}C$ was about 50 times lower than that for the as-received WC-Co. In addition, the corrosion resistance systematically increases with increasing the SiC coating thickness. On the other hand, for a 0.5 M H2SO4 solution, the corrosion current density for SiC-coated WC-Co was about 3 times lower than that for the as-received WC-Co. We discuss the physical reasons for the changes in the corrosion current density with the different electrolytes.

  • PDF

소결조제 변화에 따른 텅스텐카바이드 소결체 특성평가 (Property Evaluation of Tungsten-Carbide Hard Materials as a Function of Binder)

  • 김주훈;오익현;이정한;홍성길;박현국
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.132-137
    • /
    • 2019
  • Tungsten carbide (WC) hard materials are used in various industries and possess a superior hardness compared to other hard materials. They have particularly high melting points, high strength, and abrasion resistance. Accordingly, tungsten carbide hard materials are used for wear-resistant tools, cutting tools, machining tools, and other tooling materials. In this study, the WC-5wt.%Co, Fe, Ni hard materials are densified using the horizontal ball milled WC-Co, WC-Fe, and WC-Ni powders by a spark plasma sintering process. The WC-5Co, WC-5Fe, and WC-5Ni hard materials are almost completely densified with a relative density of up to 99.6% after simultaneous application of a pressure of 60 MPa and an electric current for about 15 min without any significant change in the grain size. The average grain size of WC-5Co, WC-5Fe, and WC-5Ni that was produced through SPS was about 0.421, 0.779, and $0.429{\mu}m$, respectively. The hardness and fracture toughness of the dense WC-5Co, WC-5Fe, WC-5Ni hard materials were also investigated.

Unified Molding and Simulation for Nano-structured Tungsten Carbide

  • Park, Seong-Jin;Johnson, John L.;German, Randall M.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.362-363
    • /
    • 2006
  • Nano-structured tungsten carbide compacts with cobalt matrices (WC-Co) offer new opportunities for achieving superior hardness and toughness combinations. A unified modeling and simulation tool has been developed to produce maps of sintering pathways from nanocrystalline WC powder to sintered nano-structured WC-Co compacts. This tool includes (1) die compaction, (2) grain growth, (3) densification, (4) sensitivity analysis, and (5) optimization. All material parameters were obtained by curve fitting based on results with two WC-Co powders. Critical processing parameters are determined based on sensitivity analysis and are optimized to minimize grain size with high density.

  • PDF