• 제목/요약/키워드: WBK(Wire-Woven Bulk Kagome)

검색결과 14건 처리시간 0.022초

다구찌법을 이용한 WBK(Wire-woven Bulk Kagome)의 최적설계 (Optimal design of an Wire-woven Bulk Kagome using taguchi method)

  • 최지은;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.13-19
    • /
    • 2008
  • A Wire-woven Bulk Kagome (WBK) is the new truss type cellular metal fabricated by assembling the helical wires in six directions. The WBK seems to be promising with respect to morphology, fabrication cost, and raw materials. In this paper, first, the geometric and material properties are defined as the main design parameters of the WBK considering the fact that the failure of WBK is caused by buckling of truss elements. Taguchi approach was used as statistical design of experiment(DOE) technique for optimizing the design parameters in terms of maximizing the compressive strength. Normalized specific strength is constant regardless of slenderness ratio even if material properties changed, while it increases gradually as the strainhardening coefficient decreases. Compressive strength of WBK dominantly depends on the slenderness ratio rather than one of the wire diameter, the strut length. Specifically the failure of WBK under compression by elastic buckling of struts mainly depended on the slenderness ratio and elastic modulus. However the failure of WBK by plastic failed marginally depended on the slenderness ratio, yield stress, hardening and filler metal area.

  • PDF

Wire-woven Bulk Kagome의 압축 특성 분석 (Analysis of Compressive Characteristics of Wire-woven Bulk Kagome)

  • 이병곤;최지은;강기주;전인수
    • 대한기계학회논문집A
    • /
    • 제32권1호
    • /
    • pp.70-76
    • /
    • 2008
  • Periodic cellular metals (PCMs) are actively being investigated because of their excellent specific strength and stiffness, and multi-functionality such as a heat disperse structure bearing external loading. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling and lower anisotropy than other truss PCMs. In this paper, the out-of-plane compressive responses of the WBK specimens have been measured, theoretically predicted and numerically analyzed. Three specimens of two-layered WBK are fabricated and tested for measuring the responses. The peak stress of compressive behavior and effective elastic modulus are predicted based on the equilibrium equation and elastic energy conservation. Moreover, the structure of the specimen is modeled using the commercial mesh generation code, PATRAN and the finite element analysis for the model under the compression is carried out using the commercial FE code, ABAQUS. Finally, the obtained results are compared with each other to analyze the compressive characteristics of Wire-woven Bulk Kagome (WBK).

새로운 와이어 직조 다공질 금속의 압축 특성 (Compressive Characteristics of New Wire-woven Cellular Metal)

  • 고경득;이기원;강기주
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1659-1666
    • /
    • 2010
  • WBD(wire-woven bulk diamond)라고 명명한 와이어로 직조된 다공질 금속의 새로운 형태를 소개한다. WBD 는 기계적 열 특성과 공학적 응용면에서 몇 년 전에 소개되어진 WBK(wire-woven bulk Kaogme)와 같이 나선형 와이어로 구성된다. WBK 에서는 각 교차점에서 3 개의 와이어가 접하나 WBD 에서는 4 개의 와이어가 서로 접하여 배열된다. 압축하중 하에서 WBD 의 기계적 거동을 조사하고 그 결과를 WBK 와 비교하였다. 같은 세장비(d/c)에서 WBD 의 밀도 및 강도는 WBK 의 약 2 배이나, WBD 의 강성도는 WBK 보다 그만큼 높지 않다.

WBK 의 구조적 특성에 대한 와이어 굴곡 효과 (Effect of Strut Waviness on Structural Performance of Wire-Woven Bulk Kagome Cores)

  • 이기원;강기주
    • 대한기계학회논문집A
    • /
    • 제35권9호
    • /
    • pp.1099-1103
    • /
    • 2011
  • 기존의 WBK(와이어 직조 카고메)의 기계적 강도와 강성은 WBK 를 구성하는 요소가 반듯하다는 가정 아래에서 계산되었다. 실제 WBK 의 요소는 3 차원 나선형상을 이루고 있어 계산된 이론 해와 실험 결과값과 차이를 보인다. 이번 연구에서는 정확한 WBK 의 기계적 강도와 강성을 위해 하나의 트러스 요소의 굴곡 효과와 브레이징 접합 부를 고려하여 계산하였다. 또한 예측한 이론 해의 검증을 위한 경계주기조건(PBC) 유한요소해석을 수행하여 실험 결과값과 비교 분석하였다.

볼록형 와이어 직조 카고메 트러스 PCM의 압축특성평가 (The Compressive Characteristics of The Convex Type Wire-woven Bulk Kagome Truss PCM)

  • 이명진;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.138-143
    • /
    • 2008
  • Recently, a new periodic cellular metal(PCM) named as Wire wove Bulk Kagome(WBK) was introduced. Based on the shape of tetrahedra composing a WBK, WBKs are classified into two types, namely, concave and convex type. They are easily differentiated by changing the assembling sequence. The effect of geometrical parameters such as the wire diameter, strut length and number of layers on the compressive behavior of concave type WBK has already been investigated. In this work, the similar works were performed with the convex type WBKs. It was shown that the compressive strength of the convex type WBK was quite similar to that of the concave type. The compressive strengths of convex type specimens also depend on the slenderness ratio, but a little different from those of concave type specimens in the detailed behavior. And densification occurs earlier than the concave type WBK.

  • PDF

Wire-woven Bulk Kagome 의 파손 메커니즘 분석 (Analysis of Failure Mechanism for Wire-woven Bulk Kaogme)

  • 이병곤;최지은;강기주;전인수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1690-1695
    • /
    • 2007
  • Lightweight metallic truss structures with open, periodic cell are currently being investigated because of their multi-functionality such as thermal management and load bearing. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling, more plastic deformation energy and lower anisotropy than other truss PCMs. The subject of this paper is an examination of the failure mechanism of Wire woven Bulk Kagome(WBK). To address this issue, the out-of-plane compressive responses of the WBK has been measured and compared with theoretical and finite element (FE) predictions. For the experiment, 2 multi-layered WBK are fabricated and 3 specimens are prepared. For the theoretical analysis, the brazed joints of each wire in WBK are modeled as the pin-joint. Then, the peak stress of compressive behavior and elastic modulus are calculated based on the equilibrium equation and energy method. The mechanical structure with five by five cells on the plane are constructed is modeled using the commercial code, PATRAN 2005. and the analysis is achieved by the commercial FE code ABAQUS version 6.5 under the incremental theory of plasticity.

  • PDF

벌크형 와이어직조 카고메 트러스 PCM의 압축거동 (I) - 균일 변형 상계해 - (Mechanical Behaviors under Compression in Wire-Woven Bulk Kagome Truss PCMs (I) - Upper Bound Solution with Uniform Deformation -)

  • 현상일;최지은;강기주
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.694-700
    • /
    • 2007
  • Recently, a new cellular metal, WBK(Wire woven Bulk Kagome) has been introduced. WBK is fabricated by assembling metal wires in six directions into a Kagome-like truss structure and by brazing it at all the crossings. Wires as the raw material are easy to handle and to attain high strength with minimum defect. And the strength and energy absorption are superior to previous cellular metals. Therefore, WBK seems to be promising once the fabrication process for mass production is developed. In this paper, an upper bound solution for the mechanical properties of the bulk WBK under compression is presented. In order to simulate uniform behavior of WBK consisted of perfectly uniform cells, a unit cell of WBK with periodic boundary conditions is analyzed by the finite element method. In comparison with experimental test results, it is found that the solution provides a good approximation of the mechanical properties of bulk WBK cellular metals except for Young's modulus. And also, the brazing joint size does not have any significant effect on the properties with an exception of an idealized thin joint.

알루미늄 나선형 와이어로 직조된 다층 Kagome truss PCM의 유동 및 열전달 특성에 관한 연구 (A Study on the Hydraulic and Heat Transfer Characteristics for the Wire-woven Bulk Kagome(WBK) Composed of Aluminum Helix Wires)

  • 주재황;강보선;강기주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2061-2066
    • /
    • 2007
  • Recently, ultra-lightweight materials with open, periodic cell structures take much attention owing to its potential for multi-functionality such as load bearing, thermal dissipation, and actuation. This paper presents experimental results on the hydraulic and heat transfer characteristics for the Wire-woven Bulk Kagome(WBK) composed of aluminum 1100 wires. The overall pressure drop and heat transfer of the WBK specimen have been experimentally investigated under forced air convection condition. The pressure loss and heat transfer performance of the aluminum WBK are compared with other heat dissipation media. It was shown that heat transfer depended on relative density and surface area density. Comparison with metal foams and other heat dissipation media such as packed beds, lattice frame materials, louvered fins, and other materials suggests that the aluminum WBK competes favorably with the best available heat dissipation media in heat transfer performance.

  • PDF

알루미늄 나선형 와이어로 직조된 다층 Kagome Truss PCM의 유동 및 열전달 특성에 관한 연구 (A Study on the Fluid Flow and Heat Transfer Characteristics for the Wire-woven Bulk Kagome(WBK) Composed of Aluminum Helix Wires)

  • 주재황;강보선;강기주
    • 대한기계학회논문집B
    • /
    • 제32권1호
    • /
    • pp.15-22
    • /
    • 2008
  • Recently, ultra-lightweight materials with open, periodic cell structures take much attention owing to its potential for multi-functionality such as load bearing, thermal dissipation, and actuation. This paper presents experimental results on the fluid flow and heat transfer characteristics for the Wire-woven Bulk Kagome (WBK) composed of aluminum 1100 wires. The overall pressure drop and heat transfer of the WBK specimen was experimentally investigated under forced air convection condition. The pressure loss and heat transfer performance of the aluminum WBK were compared with other heat dissipation media. It was shown that heat transfer characteristics depended on relative density and surface area density. Comparison with metal foams and other heat dissipation media such as packed beds, lattice frame materials, louvered fins, and others suggests that the aluminum WBK competes favorably with the best available heat dissipation media in heat transfer performance.

굽힘하중 하의 벌크형 와이어 직조 카고메 트러스 중간재를 갖는 샌드위치 판재의 기계적 거동 (Finite Element Simulation of Behavior of WBK Cored Sandwich Panels Subjected to Bending Loads)

  • 최지은;강기주
    • 대한기계학회논문집A
    • /
    • 제33권4호
    • /
    • pp.353-359
    • /
    • 2009
  • Wire-woven Bulk Kagome (WBK) is a new truss type cellular metal fabricated by systematic assembling of helical wires in six directions. In this work, the experiments of mechanical behaviors of WBK cored sandwich panels subjected to bending load were performed and the results were compared with those by the corresponding analytic solutions. And also, finite element simulations were performed to validate the optimal design according to the analytic solutions. It is found the sandwich panel with WBK core performed excellently in terms of energy absorption and deformation stability after the peak point as well as the load capacity.