• Title/Summary/Keyword: WBGT

Search Result 45, Processing Time 0.029 seconds

Evaluation of the Wet Bulb Globe Temperature (WBGT) Index for Digital Fashion Application in Outdoor Environments

  • Kwon, JuYoun;Parsons, Ken
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.23-36
    • /
    • 2017
  • Objective: This paper presents a study to evaluate the WBGT index for assessing the effects of a wide range of outdoor weather conditions on human responses. Background: The Wet Bulb Globe Temperature (WBGT) index was firstly developed for the assessment of hot outdoor conditions. It is a recognised index that is used world-wide. It may be useful over a range of outdoor conditions and not just for hot climates. Method: Four group experiments, involving people performing a light stepping activity, were conducted to determine human responses to outside conditions in the U.K. They were conducted in September 2007 (autumn), December 2007 (winter), March 2008 (spring) and June 2008 (summer). Environmental measurements included WBGT, air temperature, radiant temperature (including solar load), humidity and wind speed all measured at 1.2m above the ground, as well as weather data measured by a standard weather station at 3m to 4m above the ground. Participants' physiological and subjective responses were measured. When the overall results of the four seasons are considered, WBGT provided a strong prediction of physiological responses as well as subjective responses if aural temperature, heart rate and sweat production were measured. Results: WBGT is appropriate to predict thermal strain on a large group of ordinary people in moderate conditions. Consideration should be given to include the WBGT index in warning systems for a wide range of weather conditions. However, the WBGT overestimated physiological responses of subjects. In addition, tenfold Borg's RPE was significantly different with heart rate measured for the four conditions except autumn (p<0.05). Physiological and subjective responses over 60 minutes consistently showed a similar tendency in the relationships with the $WBGT_{head}$ and $WBGT_{abdomen}$. Conclusion: It was found that either $WBGT_{head}$ or $WBGT_{abdomen}$ could be measured if a measurement should be conducted at only one height. The relationship between the WBGT values and weather station data was also investigated. There was a significant relationship between WBGT values at the position of a person and weather station data. For UK daytime weather conditions ranging from an average air temperature of $6^{\circ}C$ to $21^{\circ}C$ with mean radiant temperatures of up to $57^{\circ}C$, the WBGT index could be used as a simple thermal index to indicate the effects of weather on people. Application: The result of evaluation of WBGT might help to develop the smart clothing for workers in industrial sites and improve the work environment in terms of considering workers' wellness.

The Effect of Urban Shade Trees on the WBGT(Wet Bulb Globe Thermometer Index) (도심 녹음수의 체감온도지수(WBGT) 조절효과)

  • 주민진;이춘석;류남형
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.51-59
    • /
    • 2004
  • Focusing on WBGT(Wet Bulb Globe Thermometer Index) according to the LAI(Leaf Area Index) variation of trees, this study verifies the effects of urban shade trees on the outdoor thermal environment. As for methodology, air$.$globe temperature, air humidity and WBGT were measured under three shade trees whose LAIs were 2.1, 4.0 and 8.2 respectively at midday(12:00-13:00) of 14 sunny days from the 4th through the 29th day of September 2003. Those factors were also measured at the unshaded areas and compared with the values of shaded areas. The measured site was paved with interlocking concrete bricks. The measurements were analyzed through the ANCOV A(Analysis of Covariance) and the regression routines of SPSS11 for windows (SPSS Inc., 2001). The major findings were as follows. 1. The direct correlation between WBGT and LAI was very low. On the contrary, the WBGT showed close correlation with air$.$globe temperature and air humidity, and the LAI also showed very close correlation with globe temperature. These results tell that dominant shading effect by the tree is on the screening of direct solar radiation which lower the globe temperature and WBGT consequently. 2. While the average globe temperatures and WBGT at unshadowed area were 40.4$^{\circ}C$ and 26.2$^{\circ}C$ respectively, the former under the shade tree with LAI 2.1, 4.0 and 8.2 were 34.5$^{\circ}C$, 32.6$^{\circ}C$ and 30.2$^{\circ}C$, and the latter were 24.6$^{\circ}C$, 24$^{\circ}C$ and 23.4$^{\circ}C$ respectively. 3. The relationship between LAI(x) and WBGT(y) can be presented with the following equation: y = 24.23+1.53 $e^{-x}$+0.36x $e^{-x}$+0.46 $x^2$ $e^{-x}$ ($R^2$ =.98) =.98)

Optimization of Several Environmental Factors to Human Performance by Using Taguchi Method

  • Ismail, A.R.;Haniff, M.H.M.;Yusof, M.Y.M.;Rahman, M.N.A.;Ghani, J.A.
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.157-164
    • /
    • 2010
  • The objective of this study is to determine the dominance effects of environmental factors such as Illuminance, humidity and Wet Bulb Globe Temperature (WBGT) on the operators' productivity at Malaysian electronic industry. A case study was carried out at an electronic components assembly factory. The environmental factors examined were the Illuminance (lux), humidity and WBGT of the surrounding workstation area. Two sets of representative data including the illuminance, humidity and WBGT level and production rate were collected during the study. The production rate data were collected through observations and survey questionnaires while the illuminance level was measured using photometer model RS 180-7133, the humidity and WBGT level were measured by using Quest Temp apparatus and humidity. Taguchi Method was utilized to find the sequence of dominant factors that contributed to the productivity of operator at that specified production workstation. The study reveals that the dominant factor contributed to the productivity was WBGT, followed by illuminance and humidity.

An Analysis of Thermal Comforts for Pedestrians by WBGT Measurement on the Urban Street Greens (도심 가로 녹음의 습구흑구온도(WBGT) 측정을 통한 보행자 열쾌적성 효과 분석)

  • Ahn, Tong-Mahn;Lee, Jae-Won;Kim, Bo-Ram;Yoon, Ho-Seon;Son, Seung-Woo;Choi, Yoo;Lee, Na-Rae;Lee, Ji-Young;Kim, Hae-Ryung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.3
    • /
    • pp.22-30
    • /
    • 2013
  • This study aims to measure the thermal comfort effects of urban street trees. As the usual dry bulb air temperature does not indicate properly how the average pedestrian feels the heat of a typical summer day under the strong sunshine, we adopted the Wet Bulb Globe Temperature(WBGT). WBGT involves black globe temperature to measure the direct radiation of sun beams on our bodies, for example our heads. We measured temperatures on very sunny and hot summer days, August 3, 4, and 7, 2012, on the urban streets of Seoul, Korea. Wet bulb, globe, and dry bulb temperatures were measured under direct sunlight from 1 O'clock to 5 O'clock pm. Globe and dry bulb temperatures were measured under street tree shades nearby during the same hours. Then the WBGTs were calculated with the formulae, one for sunny outdoor spaces, and the other for shaded outdoor spaces or indoor. The results are compared with the Korean Standards Association(KS A ISO 7243). The major findings were: 1) On very sunny and hot summer days in Seoul, street tree shades lower the WBGT about 1 to 4 degrees, 2) during the hours of 3 and 4 O'clock in the afternoon, the WBGT under the tree shades are about 3 to 4 degrees lower compared to those under sunshines(approx. 29 to 32 degrees respectively), 3) This difference makes a major thermal comfort for urban pedestrians because senior citizens or weak persons are recommended to move indoor, and even healthy people are recommended stop outdoor sports and take rests in the shades when WBGT is about 32. On the other hand, if the WBGT is around 29, or 3 degrees lower, slower walking, light works or sports are allowable, 4) On site questionnaire survey confirms the thermal comforts under the tree shades, and we even could not get survey subjects on the sunny parts of the sidewalks, 5) We strongly recommend change of guidelines for urban street trees from "one row of street trees on 6m~8m intervals" to "street trees to make continuous shades".

Evaluation of Heat Stress and Comparison of Heat Stress Indices in Outdoor Work (옥외 작업에서의 온열환경 평가 및 온열지수 비교)

  • Kim, Yangho;Oh, Inbo;Lee, Jiho;Kim, Jaehoon;Chung, In-Sung;Lim, Hak-Jae;Park, Jung-Keun;Park, Jungsun
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • Objectives: The objective of this study was to assess heat stress, compare heat stress indices, and evaluate the usefulness of wet bulb globe temperature (WBGT) among outdoor workers exposed to heat during the summer season. Methods: WBGT, dry temperature, and heat index were measured using WBGT measurers (QUESTemp 32 model and QUESTemp 34 model, QUEST, WI, USA) by industrial hygienists from August 27 to September 16, 2015. Heat stress indices were measured at the workplaces of a shipbuilder in Ulsan and a construction site in Daegu. The dry temperature observed by the Automated Synoptic Observing System (ASOS) of the Korea Meteorological Administration was also compared. Results: Dry temperature measured by WBGT is different from that by ASOS. The temperature obtained from ASOS was less than $33^{\circ}C$, above which point a heat wave is forecast by the Korea Meteorological Administration. A heat index above $32.8^{\circ}C$ as a moderate risk was not observed during measurement. WBGT was consistently higher than $22^{\circ}C$, above which the risk of heat-related illness is increased in unacclimated workers involved in work with a high metabolic rate. WBGT was sometimes higher than $28^{\circ}C$, above which the risk of heat-related illness is increased in acclimated workers involved in work with a moderate metabolic rate in September. Conclusion: According to the measurement of heat stress indices, WBGT was more sensitive than heat index and temperature. Thus, general measures to prevent heat-related diseases should be implemented in workplaces during the summer season according to WBGT.

A Study of Heat Stress Characteristics on Workers in Hot Workplace by WBGT Index (WBGT지수를 이용한 온열작업장 근로자의 열피로특성에 관한 연구)

  • 마성준;이내우;설수덕;이진우
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.112-120
    • /
    • 2000
  • We have compared the regulations of hot environment workpaces between Korea and ACGIH, then pointed out some insufficiences of Korean regulations for occupational hygiene and safety. And investigated the heat stress characteristics of laboratory, lathe and foundry working. The metabolic heat loads of those workplaces were obtained as 120, 300 및 660 kcal/hr based on WBGT index. WBGT index could be depended on weather condition, therefore useful for controlling working and rest times etc, but Belding-hatch index was represented by strength of working, definitely this would be convinient result for arranging countermeasures of workers in hot environments by estimating metabolic heat and signs of fatigue.

  • PDF

Assessment of Semen Quality among Workers Exposed to Heat Stress: A Cross-Sectional Study in a Steel Industry

  • Hamerezaee, Masoud;Dehghan, Somayeh F.;Golbabaei, Farideh;Fathi, Asad;Barzegar, Loghman;Heidarnejad, Naseh
    • Safety and Health at Work
    • /
    • v.9 no.2
    • /
    • pp.232-235
    • /
    • 2018
  • Background: This study was conducted to investigate the heat stress and semen quality among male workers in a steel industry in Iran and investigate the relationship between heat stress indices and semen parameters. Methods: The study was conducted on workers exposed (n = 30) and unexposed (n = 14) to heat in a steel industry. After obtaining a brief biography of the selected employees, scrotal temperature, oral temperature, and environmental parameters were measured, and their semen samples were analyzed according to the procedure recommended by the World Health Organization. The heat stress indices, including wet-bulb globe temperature (WBGT) and predicted heat strain (PHS), in their workplace were calculated according to environmental parameters (ISO 7243:1989 and 7933:2004, respectively). Results: Time-weighted averages of WBGT and PHS ($35.76^{\circ}C$ and 491.56 $w/m^2{\frac{w}{m^2}}$, respectively) for the exposed group were higher than threshold limit values. The mean difference of environmental, physiological, and semen parameters (exception: pH of semen), and also WBGT and PHS indices were statistically significant (p < 0.05) between the two groups. Mean semen parameters were in the normozoospermic range. WBGT and PHS indices showed significantly "negative" correlation with physiological parameters (scrotal and oral temperature) and most semen parameters (semen volume, sperm morphology, sperm motility, sperm count; p < 0.05); moreover, the correlation of WBGT with these parameters was stronger than PHS. Conclusion: Semen parameters of the studied workers exposed to heat were in the borderline level of normozoospermic range, and their semen parameters were significantly lower than controls. For better assessment of occupational environment concerning physiological and semen parameters in steel industries, WBGT can be a more useful index.

Analyses on Comparison of UTCI, PMV, WBGT between Playground and Green Space in School (학교 운동장과 녹지공간의 UTCI, PMV, WBGT 비교 분석)

  • Yoon, Young-Han;Park, Seung-Hwan;Kim, Won-Tae;Kim, Jeong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.1
    • /
    • pp.80-89
    • /
    • 2014
  • This study of the school's outdoor space for relaxing and activity of the two most numerous students, high heat and low heat with a green space, playground targets of thermal comfort indicators UTCI, PMV, WBGT using the thermal comfort students feeling compare the analyzed. The destination of this study, school facilities of Nam-gu, Namdong- gu, Incheon were studied and the investigation period was conducted from July to August. List of measurement, in the case of thermal comfort indicators, UTCI, PMV, WBGT was measured in the case of green, ratio of green coverage and GVZ was measured. GVZ analysis were as follows: A school ($4.71m^3/m^2$) B school ($3.34m^3/m^2$) C school ($0.38m^3/m^2$). Comparative analysis of the results of thermal comfort indicators by schools, UTCI was Green space $26.15{\sim}31.38^{\circ}C$ and playground $40.66{\sim}42.94^{\circ}C$, PMV values were 1.76 to 2.66 as a green space. WBGT was Green space $26.15{\sim}31.38^{\circ}C$, playground $31.67{\sim}34.53^{\circ}C$. Comparative analysis of the results of thermal comfort indicators UTCI, PMV, WBGT all A school, B school, C school, on the green space was comfortable levels more than playground. The results of the school type thermal comfort and green correlation analysis of thermal comfort UTCI, PMV, WBGT all solar radiation, globe temperature, and a positive correlation shown solar radiation, globe temperature is not comfortable, the higher was considered. UTCI, PMV, WBGT of thermal comfort indicator all ratio of green coverage, GVZ and negative correlation appears ratio of green coverage, GVZ was increased due to the lowering of the value of thermal comfort indicators was considered to be comfortable.

Analysis of Optimal Index for Heat Morbidity (온열질환자 예측을 위한 최적의 지표 분석)

  • Sanghyuck Kim;Minju Song;Seokhwan Yun;Dongkun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • The purpose of this study is to select and predict optimal heatwave indices for describing and predicting heat-related illnesses. Regression analysis was conducted using Heat-related illness surveillance system data for a number of heat-related illnesses and meteorological data from the Korea Meteorological Administration's Automatic Weather Station (AWS) for the period from 2021 to 2023. Daily average temperature, daily maximum temperature, daily average Wet Bulb Globe Temperature (WBGT), and daily maximum WBGT values were calculated and analyzed. The results indicated that among the four indicators, the daily maximum WBGT showed the highest suitability with an R2 value of 0.81 and RMSE of 0.98, with a threshold of 29.94 Celsius. During the entire analysis period, there were a total of 91 days exceeding this threshold, resulting in 339 cases of heat-related illnesses. Predictions of heat-related illness cases from 2021 to 2023 using the regression equation for daily maximum WBGT showed an accuracy with less than 10 cases of error annually, demonstrating a high level of precision. Through continuous research and refinement of data and analysis methods, it is anticipated that this approach could contribute to predicting and mitigating the impact of heatwaves.