• Title/Summary/Keyword: WAsP Engineering

Search Result 12,967, Processing Time 0.044 seconds

Estimation of Cadmium Removal Capacity on Furnace Slag in the Change of Initial Concentration and pH (초기농도와 pH 조건의 변화에 따른 제강슬래그의 카드뮴 제거능 평가)

  • Lee, Gwang-Hun;Kim, Eun-Hyup;Park, Jun-Boum;Oh, Myoung-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1006-1011
    • /
    • 2010
  • This study was focused on the reactivity of furnace slag against cadmium to design the vertical drain method with reactive column for improving contaminated sea shore sediment. The removal capacity of furnace slag was analyzed using pseudo-second-order model. And the effective parameters of removal test were initial concentration and initial pH. According to equilibrium removal amount and reactive constant calculated by pseudo-second-order model, the removal capacity was analyzed. Equilibrium removal amount of furnace slag was linearly increased as increasing intial cadmium concentration. Because the pH was around 11, the removal mechanism of furnace slag could be both sorption and precipitation. Therefore the removal amount was increased due to initial concentration. pH was increased to around 11 in the case of "No treat", but the pH were 3.8 in the case of "HAc added" and 0.7 in the case of "HCl added". The removal amount was different 4.8, 1.19 and 0.27 mg/g. This results show the pH was major factor to remove cadmium using furnace slag.

  • PDF

Modification of Schottky Barrier Properties of Ti/p-type InP Schottky Diode by Polyaniline (PANI) Organic Interlayer

  • Reddy, P.R. Sekhar;Janardhanam, V.;Jyothi, I.;Yuk, Shim-Hoon;Reddy, V. Rajagopal;Jeong, Jae-Chan;Lee, Sung-Nam;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.664-674
    • /
    • 2016
  • The electrical properties of Ti/p-type InP Schottky diodes with and without polyaniline (PANI) interlayer was investigated using current-voltage (I-V) and capacitance-voltage (C-V) measurements. The barrier height of Ti/p-type InP Schottky diode with PANI interlayer was higher than that of the conventional Ti/p-type InP Schottky diode, implying that the organic interlayer influenced the space-charge region of the Ti/p-type InP Schottky junction. At higher voltages, the current transport was dominated by the trap free space-charge-limited current and trap-filled space-charge-limited current in Ti/p-type InP Schottky diode without and with PANI interlayer, respectively. The domination of trap filled space-charge-limited current in Ti/p-type InP Schottky diode with PANI interlayer could be associated with the traps originated from structural defects prevailing in organic PANI interlayer.

Synthesis and Characterization of pH-sensitive and Self-oscillating IPN Hydrogel in a pH Oscillator (pH 진동계 안에서 pH 감응성 자기진동 IPN 하이드로젤의 합성과 분석)

  • Wang, Liping;Ren, Jie;Zhang, Xiaoyan;Yang, Xiaoci;Yang, Wu
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.359-364
    • /
    • 2015
  • A self-oscillating interpenetrating polymer network (IPN) poly(acrylic acid)/poly(ethylene glycol) (PAA/PEG) hydrogel was prepared by using radical polymerization with a two-step method. The IPN hydrogel was characterized by FTIR spectroscopy and morphological analysis. The results indicated that the chains of PEG and PAA twined to form porous structure which is beneficial to water molecules entering inside of the hydrogel. In addition, the pH-responsive behavior, salt sensitivity, swelling/de-swelling oscillatory behaviors and self-oscillation in a closed pH oscillator were also studied. The results showed that the prepared hydrogel exhibited pH-sensitivity, good swelling/de-swelling reversibility and excellent salt sensitivity. The self-oscillating behavior of swelling/de-swelling for the prepared hydrogel was caused by pH alteration coupled with the external media. This study may create a new possibility as biomaterial including new self-walking actuators and other related devices.

Effects of Electrodeposition Conditions on Properties of Ni Thin Films Electrodeposited from Baths Fabricated by Dissolving Metal Ni Powders (금속 Ni 분말을 용해한 도금용액으로부터 전기도금 된 Ni 박막 특성에 미치는 도금조건의 영향)

  • Yoon, Pilgeun;Park, Keun-Yong;Uhm, Young Rang;Choi, Sun Ju;Park, Deok-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.73-81
    • /
    • 2015
  • Chloride plating solution was fabricated by dissolving metal Ni powders in solution with HCl and deionized water. Effects of deposition conditions on the properties of Ni films electrodeposited from chloride baths were studied. Current efficiency of Ni films electrodeposited from the baths containing saccharin was decreased with increasing the current density. Residual stress of Ni thin films ware measured to be about 230 ~ 435 MPa in the range of current density of $10{\sim}25mA/cm^2$. Cathode current efficiency in baths without saccharin was initially increased with increasing pH, while it was decreased with increasing pH further. Cathode current efficiency in baths with saccharin (except at pH 2) exhibited less 10 ~ 20% than that in baths without saccharin. Residual stress of Ni films electrodeposited from baths without saccharin was measured to be 388 ~ 473 MPa in the range of pH 2 ~ pH 5 and then was increased to 551 MPa at pH 6. On the other hand, residual stress of Ni films electrodeposited from baths with saccharin was increased with increasing pH. Surface morphology was strongly affected by the change of current density, but slightly by solution pH and addition of saccharin.

Operation of biofilters with different packing material (담체 변화에 따른 Labscale 바이오 필터의 성능 실험)

  • D. Cho;Kwon, Sung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.331-333
    • /
    • 2003
  • The low-pH biofiltration system in laboratory experiments demonstrate defective performance for treating H2S. When leachate pH was in the range of 1.5 to 4, the biofilters in three different media removed H2S wi th efficiencies greater than 99% while it was treated as a single contaminant. The posibility of using a single-stage low pH biofilter depends on its performance in treating VOCs. During Phase 2, a single-stage biofilter was effective for treating mixtures of H2S and toluene with toluene concentrations below 20ppm and leachate pH between 2 and 3.5. Biofiltration of xylene was ineffective when pH was lower than 1.5. The treatment system acclimated most slowly to benzene, and treatment of benzene was apparently subject to some competive inhibition from xylene and toluene. However. co-treatment was possible after some acclimation time. Xylene was not easily treated, with higher elimination capacities and no sign of competitive inhibition.

  • PDF

Effects of Co-P Catalysts on Hydrogen Generation Properties from Alkaline $NaBH_4$ Solution (알칼리 $NaBH_4$ 용액의 수소발생특성에 미치는 Co-P 촉매의 영향)

  • Cho, Keun-Woo;Kwon, Hyuk-Sang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.379-385
    • /
    • 2005
  • Effects of Co and Co-P catalysts on the hydrolysis of alkaline $NaBH_4$ solution were investigated. Co and Co-P catalysts were prepared on Cu substrate by electroplating. Hydrogen generation rate of Co-P catalyst was much faster than that of Co catalyst, demonstrating that Co-P had higher intrinsic catalytic activity for the hydrolysis of $NaBH_4$ than Co. Hydrogen generation properties of Co-P catalysts largely depended on cathodic current density and electroplating time because they influenced on the P concentration of the Co-P catalysts. Maximum hydrogen generation rate of Co-P catalyst was 1066 ml/min.g-catalyst in 1 wt.% NaOH + 10 wt.% $NaBH_4$ solution at $20^{\circ}C$, which was obtained at cathodic current density of $0.01\;A/cm^2$ for 130 s.

Effects of Complex Agents and pH on the Deposition Behavior of Electroless Ni-Co-P Film (착화제와 pH가 무전해 Ni-Co-P 도금 피막의 석출거동에 미치는 영향)

  • Choi, Byuck-Keun;Yang, Seung-Gi;Shin, Ji-Wung;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.107-111
    • /
    • 2014
  • Electroless plated Ni-Co-P films have been used to suppress the electromagnetic waves from magnetic recording media, and the suppression is known to be achieved with films made with optimized plating composition and plating condition. Effects of complexing agents on the deposition rate and bath stability of Ni-Co-P film were studied using sodium citrate, sodium tartrate and multi-complex agents containing both of them. Deposition of electroless Ni-Co-P platings was dependent upon the complexing agents. Deposition rate was twice when using sodium tartrate compared to that using sodium citrate. And it was slightly slower with multi-complex agents than with sodium tartrate, bath stability being declined in the former. Deposition rate increased with increasing pH until pH 11. Excellent bath stability and good deposition rate were obtained using multi-complex agent as sodium citrate 0.10 mol/L and sodium tartrate 0.15 mol/L in the electroless Ni-Co-P plating films.

Investigation of the mechanism of Ni-P alloy deposition using by in-situ surface pH measurement during electrodeposition (음극표면 pH 측정에 의한 Ni-P합금의 전착기구 고찰)

  • 이규환;장도연;김동수;이상열;권식철;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.2
    • /
    • pp.93-100
    • /
    • 2002
  • To better understand the codeposition mechanism of phosphorous, surface pH and potential of cathode were measured during electrodeposition of Ni-P alloys. The pH of cathode surface was measured using a flat-bottom glass pH electrode and a 500 mesh gold gauze as cathode. The cathode surface pH was increased with increasing the current density and always higher than the pH in the bulk solution. As a result of overplotting the surface pH and cathode potential on the Pourbaix diagram, it was found that cathode surface shift to the domain of predominant of $H_2$$PO3$-or $H_2$$PO_2$-. Additionally, new deposition mechanism was suggested that $H_2$ $PO_2$- and $H_2$$PO_3$- play important roles in the deposition reaction of Ni-P alloys.

Biotransformation of Flavone by CYP105P2 from Streptomyces peucetius

  • Niraula, Narayan Prasad;Bhattarai, Saurabh;Lee, Na-Rae;Sohng, Jae Kyung;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1059-1065
    • /
    • 2012
  • Biocatalytic transfer of oxygen in isolated cytochrome P450 or whole microbial cells is an elegant and efficient way to achieve selective hydroxylation. Cytochrome P450 CYP105P2 was isolated from Streptomyces peucetius that showed a high degree of amino acid identity with hydroxylases. Previously performed homology modeling, and subsequent docking of the model with flavone, displayed a reasonable docked structure. Therefore, in this study, in a pursuit to hydroxylate the flavone ring, CYP105P2 was co-expressed in a two-vector system with putidaredoxin reductase (camA) and putidaredoxin (camB) from Pseudomonas putida for efficient electron transport. HPLC analysis of the isolated product, together with LC-MS analysis, showed a monohydroxylated flavone, which was further established by subsequent ESI/MS-MS. A successful 10.35% yield was achieved with the whole-cell bioconversion reaction in Escherichia coli. We verified that CYP105P2 is a potential bacterial hydroxylase.

Surface Modification of Phosphoric Acid-activated Carbon in Spent Coffee Grounds to Enhance Cu(II) Adsorption from Aqueous Solutions

  • Choi, Suk Soon;Choi, Tae Ryeong;Choi, Hee-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.589-598
    • /
    • 2021
  • The purpose of this study was to analyze the efficiency with which phosphorylated spent coffee grounds (PSCG) remove cationic Cu(II) ions from an aqueous solution. The pHpzc of the SCG was 6.43, but it was lowered to 3.96 in the PSCG, confirming that an acidic functional group was attached to the surface of the PSCG. According to FT-IR analysis, phosphorylation of the SCG added P=O, P-O-C (aromatic), P=OOH, and P-O-P groups to the surface of the adsorbent, and the peaks of the carboxyl and OH groups were high and broad. Also, the specific surface area, mesopore range, and ion exchange capacity increased significantly by phosphorylation. The adsorption kinetics and isothermal experiments showed that Cu(II) adsorption using SCG and PSCG was explained by PSO and Langmuir models. The maximum Langmuir adsorption capacity of SCG and PSCG was 42.23 and 162.36 mg/g, respectively. The adsorption process of both SCG and PSCG was close to physical adsorption and endothermic reaction in which the adsorption efficiency increased with temperature. PSCG was very effective in adsorbing Cu(II) in aqueous solution, which has great advantages in terms of recycling resources and adsorbing heavy metals using waste materials.