• Title/Summary/Keyword: WATER STRESS

Search Result 3,209, Processing Time 0.033 seconds

Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.149-167
    • /
    • 2013
  • The complete stress-strain behavior of steel fiber reinforced concrete in compression is needed for the analysis and design of structures. An experimental investigation was carried out to generate the complete stress-strain curve of high-performance steel fiber reinforced concrete (HPSFRC) with a strength range of 52-80 MPa. The variation in concrete strength was achieved by varying the water-to-cementitious materials ratio of 0.40-0.25 and steel fiber content (Vf = 0.5, 1.0 and 1.5% with l/d = 80 and 55) in terms of fiber reinforcing parameter, at 10% silica fume replacement. The effects of these parameters on the shape of stress-strain curves are presented. Based on the test data, a simple model is proposed to generate the complete stress-strain relationship for HPSFRC. The proposed model has been found to give good correlation with the stress-strain curves generated experimentally. Inclusion of fibers into HPC improved the ductility considerably. Equations to quantify the effect of fibers on compressive strength, strain at peak stress and toughness of concrete in terms of fiber reinforcing index are also proposed, which predicted the test data quite accurately. Compressive strength prediction model was validated with the strength data of earlier researchers with an absolute variation of 2.1%.

Results and analyses for simulational round robin on welding residual stress prediction in nuclear power plant nozzle (원전 노즐 용접부 잔류응력 예측에 대한 유한요소 해석 Round Robin 결과 및 분석)

  • Song, Tae-Kwang;Bae, Hong-Yeol;Kim, Yun-Jae;Lee, Kyoung-Soo;Park, Chi-Yong;Yang, Jun-Seog;Huh, Nam-Su;Kim, Jong-Wook;Park, June-Soo;Song, Min-Sup;Lee, Seung-Gun;Kim, Jong-Sung;Yu, Seung-Cheon;Chang, Yoon-Suk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.79-82
    • /
    • 2008
  • In this paper, results of simulational round robin test on residual stress prediction was provided. Welding residual stress is one of the reasons for primary water stress corrosion cracking in PWR. Therefore, quantifying the welding variables and defining the recommendation for prediction welding residual stress is important. Through the round robin test, it is known that compressive axial and hoop residual stress occurs in dissimilar metal weld and pre-existing residual stress distribution in dissimilar metal weld was affected by similar metal weld due to short length of safe end.

  • PDF

Stress Relaxation and Nonlinear Viscoelastic Model of PAN-PVC Copolymers (PAN-PVC 공중합체의 응력완화와 비선형 점탄성 모델)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.250-255
    • /
    • 2010
  • From the three element non-Newtonian model of one non-Newtonian viscoelastic Maxwell elements and a elastic spring, the stress relaxation equation was derived. The various model parameters of this equation were evaluated by appling the experimental results of stress relaxation to the stress relaxation equation. The theoretical curves calculated from this model parameters agreed with the experimental stress relaxation curves. From the parameters of nonlinear viscoelastic model, the hole volume, fine structure, viscoelastic properties and mechanical properties of polymer fibers were studied. The experiments of stress relaxation were carried out using the tensile tester with the solvent chamber. The stress relaxation curves of the two types polyacrylonitrile-polyvinylchloride copolymer and another two types PVC monofilament fibers were obtained in air and water of various temperatures.

Modeling Procedure to Adapt to Change of Trend of Water Demand: Application of Bayesian Parameter Estimation (물수요의 추세 변화의 적응을 위한 모델링 절차 제시:베이지안 매개변수 산정법 적용)

  • Lee, Sangeun;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.241-249
    • /
    • 2009
  • It is well known that the trend of water demand in large-size water supply systems has been suddenly changed, and many expansions of water supply facilities become unnecessary. To be cost-effective, thus, politicians as well as many professionals lay stress on the adaptive management of water supply facilities. Failure in adapting to the new trend of demand is sure to be the most critical reason of unnecessary expansions. Hence, we try to develop the model and modeling procedure that do not depend on the old data of demand, and provide engineers with the fast learning process. To forecast water demand of Seoul, the Bayesian parameter estimation was applied, which is a representative method for statistical pattern recognition. It results that we can get a useful time-series model after observing water demand during 6 years, although trend of water demand were suddenly changed.

Analytical Study on Distribution of Stresses Induced in Soil Beam (지반보의 응력분포에 관한 해석적 연구)

  • Lee, Seung-Hyun;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.5009-5014
    • /
    • 2015
  • Hydraulic uplift which is caused by the action of pore water pressure can be occurred in clay underlain by granular soil during conducting narrow excavation. Estimation of hydraulic uplift is done by considering soil beam. In order to execute more precise estimation of hydraulic uplift, determination of stress distribution in soil beam is necessary. This study presents stress distribution and displacement distribution in the soil beam based on the theory of elasticity. Stress distribution developed in the soil beam by self weight was derived using stress function depicted by $5^{th}$ order of polynomial and it was seen that vertical stresses along the depth of the soil beam show parabolic distribution and those directions be downward. Regarding soil beam which has the weight of $16kN/m^3, thickness and depth are 1m respectively, maximum vertical stress was about 1.7kPa. Stress distribution by the aciton of pore water pressure was derived via superposition of the stresses corresponding to the self weight and it can be seen that vertical compressive stresses act along the depth of the soil beam when the magnitude of pore water pressure equal to 5 times of the self weight is considered. Equations for prediction of the displacements in the soil beam are also presented.

Mitigation Effect of Drought Stress by Plant Growth-promoting Bacterium Bacillus sp. SB19 on Kale Seedlings in Greenhouse (식물생장촉진 Bacillus sp. SB19 균주의 케일 처리에 대한 가뭄 스트레스 완화 효과)

  • Kim, Dayeon;Lee, Sang-Yeob;Kim, Jung-Jun;Han, Ji-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.833-847
    • /
    • 2016
  • Drought stress is a major agricultural limitation to crop productivity worldwide, especially by which leafy vegetables, plant leaves eaten as vegetable, could be more lethal. The study was carried out to know the effect of drought tolerance plant growth promoting bacteria (PGPB) on water stress of kale seedlings. A total of 146 morphologically distinct bacterial colonies were isolated from bulk soil and rhizosphere soil of leafy vegetables and screened for plant growth promoting microbioassay in greenhouse. Out of them the isolate SB19 significantly promoted the growth of kale seedlings in increasement of about 42% of plant height (14.1 cm), 148% of leaf area ($19.0cm^2$) and 138% of shoot fresh weight (1662.5 mg) attained by the bacterially treated plants compared to distilled water treated control (9.9 cm, $7.7cm^2$, 698.8 mg). Shoot water content of SB19 treated kale seedlings (1393.8 mg) was also increased about 152% compared with control (552.5 mg). The SB19 isolated from bulk soil of kale plant in Iksan, Korea, was identified as species of Bacillus based on 16S rRNA gene sequencing analysis. We evaluated the effect of drought tolerance by the Bacillus sp. SB19 on kale seedlings at 7th and 14th days following the onset of the water stress and watering was only at 7th day in the middle of test. In the survey of 7th and 14th day, there were mitigation effect of drought stress in kale seedlings treated with $10^6$ and $10^7cell\;mL^{-1}$ of SB19 compared to distilled water treated control. Especially, there were more effective mitigation of drought damage in kale seedlings treated with $10^7cell\;mL^{-1}$ than $10^6cell\;mL^{-1}$. Further, although drought injury of bacterially treated kale seedlings were not improved at 14th day compared with 7th day, drought injury of $10^7cell\;mL^{-1}$ of SB19 treated kale seedlings were not happen rapidly but developed over a longer period of time than $10^6cell\;mL^{-1}$ of SB19 or control. The diffidence of results might be caused by the concentration of bacterial suspension. This study suggests that beneficial plant-microbe interaction could be a important role of enhancement of water availability and also provide a good method for improving quality of leafy vegetables under water stress conditions.

Arbuscular Mycorrhizal Fungus Inoculation Effect on Korean Ash Tree Seedlings Differs Depending upon Fungal Species and Soil Conditions (아버스큘 균근균(菌根菌) 접종(接種)이 균종(菌種)과 토양상태(土壤狀態)에 따라 물푸레나무 묘목(苗木)의 생장(生長)에 미치는 영향(影響))

  • Koo, Chang-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.466-475
    • /
    • 1997
  • I examined arbuscular mycorrhizal(AM) fungus inoculation effects on the seedling growth of Korean ash tree(Fraxinus rhynchophylla Hance), which distributes in fertile mesic soils, under a seven-day watering cycle of water stress and compost-added fertile conditions. Three Korea-native AM fungi were inoculated : an unidentified Glomus species, Gigaspora margarita Becker & Hall and Scutellospora heterogama(Nicol. & Gerd) Walker & Sanders from disturbed forest soils. The effect of AM fungus inoculation on the seedling varied depending upon fungal species and soil conditions. AM formation was 27 to 65% by the Glomus without forming spores, 47 to 74% with about 10 spores per 20g soil by G. margarita and about 65% with 35 spores by S. heterogama. The soil conditions did not affect either AM or spore formation. The Glomus inoculation increased shoot N and P concentrations, but did not affect seedling growth. G. margarita increased shoot N and P, irrespective of soil conditions, in general, but S. heterogama increased N under water stress and Pin the control soil only. These two fungi significantly increased seedling growth in both control and water stress soils. Compost addition increased the growth of non-mycorrhizal seedlings and offset AM fungus inoculation effects. The relative field mycorrhizal dependency(RFMD) of the seedlings was significant only in control and water stress soils by over 40% in G. margarita or S. heterogama AM plants. Under water stress RFMD was the most evident in S. heterogama AM plants. I conclude that some AM fungi such as G, margarita and S. heterogama can broaden the niche of Korean ash seedlings to a water stress or nutrient poor site but less likely to more fertile sites.

  • PDF