• Title/Summary/Keyword: WATER STRESS

Search Result 3,209, Processing Time 0.031 seconds

The protective effect of Citrus unshiu Peel water extract through PI3K/Akt/NF-κB signaling pathway in mice with HCl/ethanol-induced acute gastritis (HCl/ethanol로 유발한 급성 위염 마우스에서 PI3K/Akt/NF-κB 신호전달경로를 통한 진피 열수 추출물의 보호 효과)

  • Lee, Se Hui;Shin, Mi-Rae;Park, Hae-Jin;Roh, Seong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.288-296
    • /
    • 2022
  • This study aimed to verify the effect of Citrus unshiu peel water extract (CUP) on a mouse model of acute gastritis (AG) induced by HCl/ethanol. Several studies have found that CUP has anti-inflammatory effects. The AG model was induced by oral administration of 150 mM HCl/60% ethanol (550 µL) to all groups except the control group. Also, for drug treatment, sucralfate (10 mg/kg) and CUP (100 or 200 mg/kg) were orally administered for 90 minutes before induction. The effect of CUP treatment was confirmed by gross gastric mucosal damage measurement, and the levels of Glutamic Oxaloacetic Transaminase (GOT), Glutamic Pyruvic Transaminase (GPT), and myeloperoxidase were reduced as well as the levels of oxidative stress biomarkers and their related proteins. In addition, the levels of inflammatory proteins, mediators, and cytokines were significantly downregulated byPI3K/Akt signaling. Taken together, these results show that CUP treatment alleviates AG by regulating PI3K/Akt signaling.

Predicting Habitat Suitability of Carnivorous Alert Alien Freshwater Fish (포식성 유입주의 어류에 대한 서식처 적합도 평가)

  • Taeyong, Shim;Zhonghyun, Kim;Jinho, Jung
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Alien species are known to threaten regional biodiversity globally, which has increased global interest regarding introduction of alien species. The Ministry of Environment of Korea designated species that have not yet been introduced into the country with potential threat as alert alien species to prevent damage to the ecosystem. In this study, potential habitats of Esox lucius and Maccullochella peelii, which are predatory and designated as alert alien fish, were predicted on a national basis. Habitat suitability was evaluated using EHSM (Ecological Habitat Suitability Model), and water temperature data were input to calculate Physiological Habitat Suitability (PHS). The prediction results have shown that PHS of the two fishes were mainly controlled by heat or cold stress, which resulted in biased habitat distribution. E. lucius was predicted to prefer the basins at high latitudes (Han and Geum River), while M. peelii preferred metropolitan areas. Through these differences, it was expected that the invasion pattern of each alien fish can be different due to thermal preference. Further studies are required to enhance the model's predictive power, and future predictions under climate change scenarios are required to aid establishing sustainable management plans.

Seismic Performance Evaluation of Mechanically Jointed PE Pipeline by Response Displacement Method (기계식 이음 PE관의 응답변위법 기반 내진성능평가 요령)

  • DongSoon Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.23-32
    • /
    • 2023
  • The seismic performance of buried PE pipes is reported to be favorable due to their exceptional elongation capacity at break. Although a seismic performance evaluation procedure based on the response displacement method has been summarized in Korea for fusion-bonded PE pipes, there is currently no procedure available for mechanically jointed PE pipes. This article aims to present a seismic performance evaluation procedure based on the response displacement method specifically designed for mechanically jointed PE pipes in Korea. When employing the mechanical joining method for PE pipes, it is recommended to adhere to the evaluation procedure established for segment-type pipes. This involves assessing the stress induced by the pipe, the expansion and contraction strain of the joint, and the bending angle of the pipe joint. Furthermore, the coefficient of inhomogeneity of the soil, which is necessary for estimating the axial strain of the ground, is introduced. Additionally, a computation method for determining lateral displacement and reconsolidation settlement in soil susceptible to liquefaction is proposed. As a result of the sensitivity analysis considering the typical soil condition in Korea, the mechanically jointed PE pipe with a certain quality was shown to have good structural seismic safety when soil liquefaction was not considered. This procedure serves as a valuable tool for seismic design and evaluating the seismic performance of mechanically joined buried PE pipes, which are primarily utilized for connecting small-diameter pipes.

Three-Dimensional Numerical Simulations of Open-Channel Flows with Alternate Vegetated Zones (교행식생 영역을 갖는 개수로 흐름에서의 3차원 수치모의)

  • Kang, Hyeongsik;Kim, Kyu-Ho;Im, Dongkyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.247-257
    • /
    • 2009
  • In the present paper, turbulent open-channel flows with alternate vegetated zones are numerically simulated using threedimensional model. The Reynolds-averaged Navier-Stokes Equations are solved with the ${\kappa}-{\varepsilon}$ model. The CFD code developed by Olsen(2004) is used for the present study. For model validation, the partly vegetated channel flows are simulated, and the computed depth-averaged mean velocity and Reynolds stress are compared with measured data in the literature. Comparisons reveal that the present model successfully predicts the mean flow and turbulent structures in vegetated open-channel. However, it is found that the ${\kappa}-{\varepsilon}$ model cannot accurately predict the momentum transfer at the interface between the vegetated zone and the non-vegetated zone. It is because the ${\kappa}-{\varepsilon}$ model is the isotropic turbulence model. Next, the open channel flows with alternate vegetated zones are simulated. The computed mean velocities are compared well with the previously reported measured data. Good agreement between the simulated results and the experimental data was found. Also, the turbulent flows are computed for different densities of vegetation. It is found that the vegetation curves the flow and the meandering flow pattern becomes more obvious with increasing vegetation density. When the vegetation density is 9.97%, the recirculation flows occur at the locations opposite to the vegetation zones. The impacts of vegetation on the flow velocity and the water surface elevation are also investigated.

Analysis of Flow Velocity in the Channel according to the Type of Revetments Blocks Using 3D Numerical Model (3차원 수치모델을 활용한 호안 블록 형상에 따른 하도 내 유속 분석)

  • Dong Hyun Kim;Su-Hyun Yang;Sung Sik Joo;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.9-18
    • /
    • 2023
  • Climate change affects the safety of river revetments, especially those associated with external flooding. Research on slope reinforcement has been actively conducted to enhance revetment safety. Recently, technologies for producing embankment blocks using recycled materials have been developed. However, it is essential to analyze the impact of block shapes on the flow characteristics of exclusion zones for revetment safety. Therefore, this study investigates the influence of revetment block shapes on the hydraulic characteristics of revetment surfaces through 3D numerical simulations. Three block shapes were proposed, and numerical analyses were performed by installing the blocks in an idealized river channel. FLOW-3D was used for the 3D numerical simulations, and the variations in maximum flow velocity, bed velocity beneath the revetment, and maximum shear stress were analyzed based on the shapes of the revetment blocks. The results indicate that for irregularly sized and spaced revetment blocks, such as the natural stone-type vegetation block (Block A), when connected to the revetment in an irregular manner, the changes in flow velocity in the revetment installation zone are more significant than those for Blocks B and C. It is anticipated that considering the topographical characteristics of rivers in the future will enable the design of revetment blocks with practical applicability in the field.

Evaluation of hydrologic risk of drought in Boryeong according to climate change scenarios using scenario-neutral approach (시나리오 중립 접근법을 활용한 기후변화 시나리오에 따른 보령시 가뭄의 수문학적 위험도 평가)

  • Kim, Jiyoung;Han, Young Man;Seo, Seung Beom;Kim, Daeha;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.225-236
    • /
    • 2024
  • To prepare for the impending climate crisis, it is necessary to establish policies and strategies based on scientific predictions and analyses of climate change impacts. For this, climate change should be considered, however, in conventional scenario-led approach, researchers select and utilize representative climate change scenarios. Using the representative climate change scenarios makes prediction results high uncertain and low reliable, which leads to have limitations in applying them to relevant policies and design standards. Therefore, it is necessary to utilize scenario-neutral approach considering possible change ranges due to climate change. In this study, hydrologic risk was estimated for Boryeong after generating 343 time series of climate stress and calculating drought return period from bivariate drought frequency analysis. Considering 18 scenarios of SSP1-2.6 and 18 scenarios of SSP5-8.5, the results indicated that the hydrologic risks of drought occurrence with maximum return period ranged 0.15±0.025 within 20 years and 0.3125±0.0625 within 50 years, respectively. Therefore, it is necessary to establish drought policies and countermeasures in consideration of the corresponding hydrologic risks in Boryeong.

Studies on the Germination Characters of Korean Ginseng (Panax ginseng C.A. Meyer) Seed (고려인삼종자(高麗人蔘種子)의 발아특성(發芽特性)에 관(關)한 연구(硏究))

  • Won, Jun Yeon;Jo, Jae Seong
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.1
    • /
    • pp.47-68
    • /
    • 1988
  • This study was conducted to define the optimal conditions for embryo growth during seed stratification and for breaking dormancy as well as seed germination of stratified ginseng seeds. The experiments were also carried out to detect some materials which were expected to induce seed dormancy in the ginseng seeds. The results summarized as follows; 1. The growth of embryo during seed stratification was significantly inhibited by the existence of endocarp. The fastest embryo growth was resulted at $15^{\circ}C$ and an estimated optimal temperature for embryo growth was about $18^{\circ}C$. 2. There was no significant difference between the embryo growth and germination ratio of ginseng seeds which were sown in seed bed at Aug-5 without seed stratification and that of artificial seed stratification. 3. Embryo growth and germination ratio was significantly inhibited by high temperature treatment at $30^{\circ}C$ for 24 hours or respiration stress by immersing seeds in water for 10 days or more. 4. When the seed stratification was started at $10^{\circ}C$, growth of embryo in the ginseng seeds were almost stopped. But, when the seeds were stratified first at $20^{\circ}C$ for 50 days and next at $10^{\circ}C$ for 50 days, the embryo growth was significantly promoted compared with the embryo growth in the seeds which were stratified at $20^{\circ}C$ for 100 days. 5. The successive embryo growth after seed stratification was significantly accelerated at $10^{\circ}C$ but the seeds chilled at $5^{\circ}C$ for 100 days were resulted in the highest germination ratio as well as the shortest days for germination. 6. The successive embryo growth during chilling treatment and seed germination were significantly inhibited by immersing seeds in water just before chilling treatment or during chilling treatment and by interruption of chilling treatment with raising temperature to $20^{\circ}C$ for 20 days during chilling treatment. 7. The germination ratio of ginseng seeds which finished chilling treatment was highest at $10^{\circ}C$ and 62.5% was the estimated soil moisture for the best germination of ginseng seeds. The ginseng seeds were found to require high amount of oxygen for germination. 8. Only water soluble material in homogenized ginseng seeds showed a significant inhibiting effect on the seed germination of sesame, millet and soybean. Water soluble material dissolved from undehisced ginseng seeds showed stronger inhibiting effect on the seedling growth of sesame than material from dehisced ginseng seeds. Extraction temperature did not influence the inhibiting effect of the material dissolved from ginseng seeds on the seedling growth of sesame. 9. Water soluble materials dissolved from the berry pulps, leaves, fresh roots and dried roots also showed a significant inhibiting effect on the seedling growth of sesame. 10. Water soluble materials dissolved from the ginseng seeds, leaves and fresh roots showed a significant inhibiting effect on the germination of true fungi and the growth of spawn but the growth of phytopathogenic bacteria was not. 11. Among the water soluble materials dissolved from ginseng seeds, the materials of low molecular weight less than 3,000 were resulted a significant inhibiting effect on the seedling growth of sesame and the materials of high molecular weight also showed an inhibiting effect.

  • PDF

Antioxidant Properties of Tannic Acid and its Inhibitory Effects on Paraquat-Induced Oxidative Stress in Mice

  • Choi, Je-Min;Han, Jin;Yoon, Byoung-Seok;Chung, Jae-Hwan;Shin, Dong-Bum;Lee, Sang-Kyou;Hwang, Jae-Kwan;Ryang, Ryung
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.728-734
    • /
    • 2006
  • The tannins represent a highly heterogeneous group of water-soluble plant polyphenols that may play an important role in antimutagenic and antioxidant properties. We investigated the antioxidant function of tannic acid in comparison to other phenolic compounds including catechin, chlorogenic acid, cinnamic acid, ellagic acid, and gallic acid for their ability to scavenge several stable radicals and reactive oxygen species (ROS) such as ${\bullet}DPPH^+$, ${\bullet}ABTS^+$, hydrogen peroxide, hydroxyl radical, and superoxide radical. The ability of tannic acid to decrease paraquat-induced lipid oxidation in mouse liver and lung through its antioxidant properties was also assessed. The results showed that almost all the tested compounds have stable radical scavenging activity except cinnamic acid. Tannic acid, gallic acid, and ellagic acid demonstrated remarkable ROS scavenging properties toward $H_2O_2$, ${\bullet}OH^-$, ${\bullet}O_2^-$ and especially only tannic acid could inhibit paraquat-induced lipid peroxidation effectively in mouse liver and lung. Based on these results, it appears that increased number of galloyl and ortho-hydroxyl groups enhances the antioxidant activity of phenolic compounds and tannic acid is evaluated as the most effective antioxidant among all the tested compounds. These results suggest that the tannins, especially tannic acid, can be used as therapeutic agent for various diseases caused by ROS.

EROD and TOSC Assays Using Sentinel Fish Species as Tools for Assessing Physiological Level of Aquatic Ecosystem Health: Case Study

  • Lee, Jae-Hoon;Kim, Hyun-Mac;Jang, Seong-Hui;Yun, Kang-Uk;Kim, Sang-Kyum;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.541-546
    • /
    • 2008
  • The purpose of this study was to evaluate ecosystem health effect in the physiological levels, based on ethoxyresorufin-O-deethylase (EROD) and total oxyradical scavenging capacity (TOSC) assays using sentinel fish species. We collected fish samples of Zacco platypus in May 2008 from 3 sampling sites including upstream, midstream, and downstream of the Gap Stream. EROD activity was averaged 4.54 in the downstream, 2.7 fold higher than upstream and indicated that stream condition was degraded along with longitudinal gradient from up to downstream. Downstream, especially was significantly increased (p < 0.01) so that indicated various pollutants including nutrient enrichment and toxicant exposure from the point sources, wastewater treatment plant and industrial complex may impact to the stream condition. In the mean time, TOSC assays showed higher in the midstream than other sites, but the values were not significant, compared to the previous report on oxidative stress. Overall results indicated that our approaches applying two biomarkers can be effectively used for diagnosis of the physiological levels in an integrative stream health assessments and can be applied as useful pre-warning techniques as a biochemical alarm system of organic pollutions.

Application of Numerical Analysis for Sand Drain by the Multi-purpose Program of Soft Foundation Analysis (연약식반교양공법에 이용될 범용프로그램의 Sand Drain 공법에의 적용)

  • 박병기;정진섭
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.17-26
    • /
    • 1985
  • This study was carried out for the purpose of comparing in reference to sand drain in the next three different cases. First, The case of drain material (sand pile) has some rigidity during embankment and consolidation. Second, In usual case of no rigidity as a paper drain without permeability during embankment and consolidation Third, Check up clay behavior when above the two cases carried out respectively. This FEM analysis is consisted with Biot's consolidation equation when it is used for Christian Boehmer's numerical technique. The main results are obtained from above the Analysis When sand drain has some rigidity, the lateral and vertical deformation of clay foundation is restrained considerable amount and .exhibited bearing capacity of load as a pile According to the foundation in drained condition and untrained condition, the results are much variable in this analysis method. Also, The behaviors of stress path and pore water pressure met our expectation during , consolidation. This analysis should be considered to put into use of sand drain and design in future.

  • PDF