• Title/Summary/Keyword: W-beam

Search Result 1,046, Processing Time 0.032 seconds

Micro-machining inside of a transparent glass (투명유리 내부의 컬러 미세형상 가공)

  • Kim Y.M.;Yoo B.H.;Cho S.H.;Chng W.S.;Kim J.G.;Whang K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.209-210
    • /
    • 2006
  • We have successfully termed brown colored patterns inside of a transparent borosilicate glass generally known as BK7, laying the focus of near infrared Ti: sapphire femtosecond laser beam in the bulk BK7 glass. It is important to keep the laser power well below the damage threshold of BK7 in forming the color center. Thanks to the low laser power, there was no laser induced mechanical damage such as cracks or threads in the color formed area. From the absorbance spectrum and its gaussian fitting, we found the band gap of BK7, 4.21eV, and three absorption edges.

  • PDF

The Surface Hardening Characteristics of Hot work Tool Steel by CW Nd:YAG Laser (CW Nd:YAG 레이저에 의한 열간금형 공구강의 표면경화특성)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Shin B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.219-220
    • /
    • 2006
  • Laser surface hardening technologies have been used to improve characteristics of wear and to enhance the fatigue resistance for mold parts. The objective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser surface hardening for the case of SKD61 steel. CW Nd:YAG laser is selected as the heat source. The optical lens with the elliptical profile is designed to obtain a wide surface hardening area with a uniform hardness. From the results of the experiments, it has been shown that the maximum hardness is approximatly 740 Hv when the power, focal position and the travel of laser are 1,095 W, +1mm and 0.3 m/min, respectively. In addition, the hardening width using the elliptical lens was three time larger than that using the defocusing of laser beam.

  • PDF

Epitaxial growth of Pt Thin Film on Basal-Plane Sapphire Using RF Magnetron Sputtering

  • 이종철;김신철;송종환;이충만
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.41-41
    • /
    • 1998
  • Rare earth metal films have been used as a buffer layer for growing ferroelectric t thin film or a seed layer for magnetic multilayer. But when it was deposited on s semiconductor substrates for the application of magneto-optic (MO) storage media, it i is difficult to exactly measure magnetic cons떠nts due to shunting current, and so it n needs to grow metal films on insulator substrate to reduce such effect. Recently, it w was reported that ultra-thin Pt layer were epitaxially grown on A12O:J by ion beam s sputtering in 비떠 high vacuum and it can be used as a seed layer for the growth of C Co-contained magnetic multilayer. In this stu$\phi$, Pt thin film were epi떠xially grown on AI2D3 ($\alpha$)OJ) by RF magnetron s sputtering. The crystalline structure was analyzed by transmission electron microscope ( (TEM) and Rutherford Back Scattering (RBS)/Ion Channeling. In TEM study, Pt was b believed to be twinned on AI잉3($\alpha$)01) su$\pi$ace about Pt(ll1) plane.Moreover, RBS c channeling spectra showed that minimum scattering yield of Pt(111)/AI2O:J(1$\alpha$)OJ) was 4 4% and Pt(11J)/AI2D3($\alpha$)OJ) had 3-fold symmetry.

  • PDF

Direct writing of multi-layer diffraction grating inside fused silica glass by using a femtosecond laser (펨토초 레이저를 이용한 실리카 내부의 다층 회절격자 가공 기술)

  • Choi, Hun-Kook;Kim, Jin-Tae;Sohn, Ik-Bu;Noh, Young-Chul
    • Laser Solutions
    • /
    • v.14 no.3
    • /
    • pp.17-20
    • /
    • 2011
  • We fabricated a multi-layer diffraction grating inside fused silica glass by using a femtosecond laser direct writing method. The femtosecond laser with a wavelength of 515 nm, a pulse width of 250 fs, a repetition rate of 100 kHz, and an average output power of 6 W was used. Two layer diffraction grating with a grating period of $6{\mu}m$ was successfully fabricated with the layer gap of 0.5, 1, 2, 3, and $5{\mu}m$, respectively. Also, we investigated the diffraction pattern by illuminating a He-Ne laser beam. Finally, we demonstrated the diffraction grating with a grating period of $3{\mu}m$ by adjusting the gap of each layer with a grating period of $6{\mu}m$. Femtosecond laser direct writing technology of multi-layer has a potential to fabricate the diffraction grating with a grating period of below $1.5{\mu}m$.

  • PDF

Effect of Making a Hole in Zona Pellucida by Laser on Hatching of Frozen-thawed ICR Mouse Embryos (레이저를 통한 투명대내의 천공이 동결융해 ICR 마우스 수정란의 부화에 미치는 영향)

  • Yong, Hwan-Yul
    • Journal of Embryo Transfer
    • /
    • v.23 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • This study was performed to investigate the effect of laser-assisted hole in the zona pellucida (ZP) of frozen-thawed ICR mouse embryos on the process of hatching that is critical for expanded blastocysts to implant into endometrium, Vitrification medium, composed of ethylene glycol and sucrose supplemented with 7.5% (w/v) PVP, was used to freeze $2{\sim}4$ cell stage embryos recovered from oviducts of superovulated and mated female mice before storing them in $LN_2$. Right after thawing them, a laser beam was shot to make a hole in ZP followed by culturing in KSOM for $96{\sim}120\;hr$ and examining development to blastocyst and hatching every 12 hr. Laser-treated embryos showed significantly higher hatching rate compared to control (92.9% vs. 22.1%, p<0.05). From around Day 4, blastocysts developed from laser-treated embryos started hatching while the blastocysts of control group failed to hatch showing a lot of shrinkage. This study shows that a laser-assisted hole in ZP improves the hatching rate of blastocysts developed from frozen-thawed, in vitro cultured ICR mouse embryos.

Characteristics Induction and Laser Surface hardening of SM45C Steel (SM45C강의 레이저표면경화와 고주파표면경화특성)

  • Na Gee-Dae;Shin Ho-Jun;Shin Byung-Heon;Yoo Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.39-50
    • /
    • 2006
  • Laser heat treatment technologies have been used to improve characteristics of wear and to enhance the fatigue resistance for automotive parts. The bjective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser heat treatment for the case of SM45C medium carbon steel. CW Nd:YAG laser is selected as the heat source. The optical lens with the elliptical profile is designed to obtain a wide heat treatment area with a uniform hardness. From the results of the experiments, it has been shown that the maximum hardness is approximatly 780 Hv when the power and the travel of laser are 1,095 W and 0.6 m/min, respectively. In addition, the hardening width using the elliptical lens was three time larger than that using the defocusing of laser beam.

Heteroepitaxial Structure of ZnO Films Deposited on Graphene, $SiO_2$ and Si Substrates

  • Pak, Sang-Woo;Cho, Seong-Gook;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.309-309
    • /
    • 2012
  • Heteroepitaxial growth remains as one of the continuously growing interests, because the heterogeneous crystallization on different substrates is a common feature in the fabrication processes of many semiconductor materials and devices, such as molecular beam epitaxy, pulsed laser deposition, sputtering, chemical bath deposition, chemical vapor deposition, hydrothermal synthesis, vapor phase transport and so on [1,2]. By using the R.F. sputtering system, ZnO thin films were deposited on graphene 4 and 6 mono layers, which is grown on 400 nm and 600 nm $SiO_2$ substrates, respectively. The ZnO thin layer was deposited at various temperatures by using a ZnO target. In this experimental, the working power and pressure were $3{\times}10^{-3}$ Torr and 50 W, respectively. The base pressure of the chamber was kept at a pressure around $10^{-6}$ Torr by using a turbo molecular pump. The oxygen and argon gas flows were controlled around 5 and 10 sccm by using a mass flow controller system, respectively. The structural properties of the samples were analyzed by XRD measurement. The film surface and carrier concentration were analyzed by an atomic force microscope and Hall measurement system. The surface morphologies were observed using field emission scanning electron microscope (FE-SEM).

  • PDF

RF 마그네트론 스퍼터링 방법으로 증착된 CdS박막의 기판 온도와 열처리 온도 변화에 따른 구조적 및 광학적 특성

  • Im, Jeong-U;Kim, Myeong-Seop;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.399-399
    • /
    • 2012
  • II-V 족 화합물 반도체인 황화카드뮴(CdS)은 상온에서 2.42 eV의 밴드갭을 갖는 직접 천이형 물질로서 CdTe 또는 $CuInSe_2$와 같은 박막형 태양전지의 투과층(window layer)으로 널리 사용되고 있다. CdS 박막은 전자빔 증착법(e-beam evaporation), 화학용액증착법(chemical bath deposition), 열분해법(spray pyrolysis), 스퍼터링법(sputtering) 등으로 제작되고 있다. 이 중 스퍼터링법의 경우, 다른 증착법에 비해 조작이 간단하고 넓은 면적에서 균일한 박막을 증착할 수 있을 뿐만 아니라, 박막두께 조절이 용이하다. 따라서 본 실험에서는 RF 마그네트론 스퍼터링법으로 증착된 CdS 박막의 기판온도 및 열처리 온도변화에 따른 구조적 및 광학적 특성을 조사하였다. 기판은 RCA 기법으로 세정된 Corning Eagle 2000 유리 기판을 사용하였다. 박막 공정은 초기 진공 $1{\times}10^{-6}Torr$ 상태에서 20 sccm의 Ar 가스를 주입하고 100 W의 RF 파워, 7 mTorr의 공정 압력에서 기판 온도를 $200^{\circ}C$부터 $500^{\circ}C$까지 변화시키면서 수행하였다. 증착된 CdS 박막은 질소 분위기의 가열로(furnace)를 이용해 $300-500^{\circ}C$ 온도에서 30분간 열처리되었다. 시료들의 표면 형상은 scanning electron microscope를 사용하여 관찰하였으며, UV-vis-NIR spectrophotometer를 사용하여 400-1,000 nm 파장영역에서의 투과율을 측정하였다. 그리고 X-선 회절분석(X-Ray Diffraction)으로 결정구조를 조사하고 결정립 크기를 산출하였다.

  • PDF

A Field Survey on the Structure and Maintenance Status of Pipe Framed Greenhouses (파이프 골조 온실의 구조 및 유지관리실태 조사분석)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.106-114
    • /
    • 2000
  • An investigation was conducted to get the basic data for establishing maintenance strategy of pipe framed greenhouses. The contents of the investigation consisted of actual state of structures, maintenance status, meteorological disaster, and corrosion characteristics of pipe framework in greenhouses. the number of greenhouses investigated was 108 in total. Most multi-span greenhouses had narrower width and lower height than the standared 1-2W greenhouse, and most of single-span greenhouses were tunnel type. In multi-span greenhouses, the size and interval of frameworks such as rafter, purline, column , and cross beam were mostly suitable, but frameworks of single-span greenhouses were mostly insufficient. After about 7 years in grounds, 8 years in joints, 10 years in bending parts. and 13 years in columns. pipe surface was mostly rusted. Most weak parts in corrosion were pipes in contact with the ground, joints, roll-up shaft pipes, and pipes close to the gutter. Almost all of the greenhouse farmers didn't pay any attention to maintenance affair in a regular interval for pipe framed grenhouses. Many greenhouses have experienced the meteorologicla diaster such as uplift of foundation, partial or complete failure by the hyphoon and/or high winds.

  • PDF

Microstrcture and Mechanical Properties of HfN Films Deposited by dc and Inductively Coupled Plasma Assisted Magnetron Sputtering (직류 및 유도결합 플라즈마 마그네트론 스퍼터링법으로 제조된 HfN 코팅막의 미세구조 및 기계적 물성연구)

  • Jang, Hoon;Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.67-71
    • /
    • 2020
  • For deposition technology using plasma, it plays an important role in improving film deposited with high ionization rate through high density plasma. Various deposition methods such as high-power impulse magnetron sputtering and ion-beam sputtering have been developed for physical vapor deposition technology and are still being studied. In this study, it is intended to control plasma using inductive coupled plasma (ICP) antennas and use properties to improve the properties of Hafnium nitride (HfN) films using ICP assisted magnetron sputtering (ICPMS). HfN film deposited using ICPMS showed a finer grain sizes, denser microstructure and better mechanical properties as ICP power increases. The best mechanical properties such as nanoindentation hardness of 47 GPa and Young's modulus of 401 GPa was obtained from HfN film deposited using ICPMS at ICP power of 200 W.