• Title/Summary/Keyword: W-LED

Search Result 782, Processing Time 0.026 seconds

A Study on Heat Simulation for Heat Radiation in 150W LED (150W LED등기구 방열을 위한 열 해석에 관한 연구)

  • So, Byung Moon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.79-85
    • /
    • 2016
  • For long life time and high efficiency, not necessary in improvement of LED chip structure, but also improve heat radiation for decrease heat in LED chip. In this study, efficiency decline factor has been investigated in LED lamp as study heat characteristic, luminance flux and heat resistance. When LED lamp temperature was increased, about 7% loss of luminance flux. In consequence of temperature analysis, width of fin was the most important factor of heat radiation. As a result, secure the enough heat path is very important factor of LED lamp design.

Analysis of the Thermoelectric Devices' Power Generation Performance for Utilizing the Waste Heat of LED Tunnel Lighting Module (LED터널등 모듈의 폐열활용을 위한 열전소자의 발전 성능 분석)

  • Jeong, Ji-Young;Her, In-Sung;Lee, Se-Il;Kim, Myeong-Ho;Yu, Young Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.1-6
    • /
    • 2015
  • In this paper, we propose the LED(Light-Emitting-Diode) emergency lighting in a tunnel by using the thermoelectric devices. To achieve high generated power, thermoelectric device should be have high Seebeck coefficient and small contact area. Also, we reveal that a moderate heatsink required for high generated power. From the waste heat of LED tunnel lighting module (25W), the generated power was 0.062W by thermoelectric device, and it could illuminate for 1hour after charge the battery of emergency lighting during about 101hours.

A Study on the Active EMI Filter for LED Driver (LED 구동장치용 능동 EMI 필터의 실현)

  • Lee, Dong-Ho;Choi, Min-Whan;Park, Chong-Yeun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • Recently, LED is being used as various applications such as home lightings, work lightings and so on. EMI noise generated from LED driver have become a problem according to increase the use of LED. In this paper, Active EMI filter composed active and passive components is discribed as a method of solving a problem of EMI. The proposed filter is applied to the 160W LED load to verify performance experimentally. To compare the performance, We did an experiment using the proposed filter and the passive filter on the same 160W LED load and Driver System. As a result, The proposed Active EMI filter attenuated Conduction EMI noise better than any existing passive filter.

Analysis on the Luminous Efficiency of Phosphor-Conversion White Light-Emitting Diode

  • Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.22-26
    • /
    • 2013
  • The author analyzes the luminous efficiency of the phosphor-conversion white light-emitting diode (LED) that consists of a blue LED chip and a yellow phosphor. A theoretical model is derived to find the relation between luminous efficiency (LE) of a white LED, wall-plug efficiency (WPE) of a blue LED chip, and the phosphor absorption ratio of blue light. The presented model enables to obtain the theoretical limit of LE and the lower bound of WPE. When the efficiency model is applied to the measured results of a phosphor-conversion white LED, the limit theoretical value of LE is obtained to be 261 lm/W. In addition, for LE of 88 lm/W at 350 mA, the lower bound of WPE in the blue LED chip is found to be ~34%. The phosphor absorption ratio of blue light was found to have an important role in optimizing the luminous efficiency and colorimetric properties of phosphor-conversion white LEDs.

Analysis of Junction Temperature Measurement in 20W Module for Street Lighting (20W 가로등 모듈의 접합온도 측정 분석)

  • Lee, Se-Il;Yang, Jong-Kyung;Kim, Nam-Goon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.163-163
    • /
    • 2010
  • 기존 LED의 접합온도 및 열저항은 PKG 단계에서 측정 가능 하였다. PKG에서의 접합온도 측정방식과 같은 방법으로 C사의 1W High Power LED XP2 20개를 직렬 연결하여 모듈을 구성한 20W 가로등 모듈에 대하여 접합온도를 측정 하였다. 측정결과 20W 가로등 모듈의 접합온도는 약 $61^{\circ}C$로 나타났다.

  • PDF

LED Source Optimization for the LED Chip Array of the LED Luminaires (LED 조명기구에서 LED 칩 배치에 따른 광원 최적화)

  • Yoon, Seok-Beom;Chang, Eun-Young
    • Journal of Digital Convergence
    • /
    • v.14 no.4
    • /
    • pp.419-424
    • /
    • 2016
  • In this paper, we studied a light distribution for the LED chips arrangement using an optical design software. The structures of the edge type LED luminaires are reflector plane, LGP(lighting guide plane) and diffuse plane. The reflector plane is on the middle of the overall structure. We had simulation that placing LED chips on the reflector center of the reflector edge by changing the position of LED chips above the reflector center at 1mm, 2mm, and 3mm respectively. In the case, when LED chips are on the center of the reflector, it shows the light distribution of the general diffuse illumination, the semi-direct distribution with 0.56 efficiency and the direct distribution with 0.31 efficiency. And the wedge type LGP shows more efficiency than the flat type. Gradually increasing shape of semi-spherical type by 0.015mm has power of 1.02W, efficiency of 0.25, and maximum luminous intensity of 0.104W/sr, it also and shows the better optical characteristics than the reflector plane that have no patterns. This semi-spherical type shows the better optical characteristics than the reflector plane that have no patterns.

Analysis of Heat Dissipation Characteristics for Standard 25 [W] LED Module of Korea Expressway Corporation: Using CFD Analysis (CFD 해석을 이용한 한국도로공사 표준 25 [W] LED 모듈의 방열 특성 분석)

  • Lee, Se-Il;Her, In-Sung;Lee, A-Ram;Jung, Min-Joo;Yu, Young-Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.541-546
    • /
    • 2014
  • Korea Expressway Corporation established standard of LED lighting fixture in Dec. 2013. To raise compatibility, the standard requires a fixed form and it is applied to street lights and tunnel lights, etc. Because streetlight has different circumstance condition from tunnel light that is down light and exposed to constant wind velocity over height of 8 meters, in case of LED module which has the same shape, characteristic of radiant heat can be different. In this paper, we designed 25 [W] LED Module that is designated by standard of Korea Expressway Corporation and analyzed characteristics of radiant heat about natural convection and forced convection. It is dropped 10.12[$^{\circ}C$] that max temperature is decreased by increasing 20 mm of bended height of heatsink at the condition of natural convection. Radiant heat characteristic of bended height 35 mm became 78.08[$^{\circ}C$] at the condition of natural convection, 55.30[$^{\circ}C$] at the condition of forced convection so that 22.78[$^{\circ}C$] is decreased that is 29.1[%] decrease. Bended height 55mm became 67.96[$^{\circ}C$] at the condition of natural convection, 48.04[$^{\circ}C$] at the condition of forced convection so that 19.92[$^{\circ}C$] is decreased that is 29.3% decrease.

Heat Sink of LED Lights Using Engineering Plastics (엔지니어링 플라스틱의 LED조명 방열판 적용)

  • Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.61-68
    • /
    • 2013
  • As an advance study for the development of a heat sink for special purpose high power illumination, an investigation was made to find feasibility for the application of copper plated EP to a heat sink of small LED light of less than 10W installed in commercial product. In this study, the plated heat sink with EP copper was fabricated for the conventional LED light. It was used actually for finding heat radiation property and effectiveness of the heat sink accompanied with measurement of luminous intensity. The heat is radiated by transfer and dissipation only through the copper plated surface due to extremely low heat conductivity of EP in case of EP heat sink; however the total area of the plate plays the function of heat transfer as well as heat radiation in case of the aluminum heat sink. It seems that the volume difference of heat radiating material is so big that the temperature $P_1$ is 9.0~12.3% higher in 3W and 42.7~54.0% higher in case of 6W volume difference of heat radiating material is so big that the temperature $P_1$ is 9.0~12.3% higher in 3W and 42.7~54.0% higher in case of 6W even though heat transfer rate of copper is approximately 1.9 times higher than that of aluminum. It was thought that this is useful to utilize for heat sink for low power LED light with the low heating rate. Also, the illumination could be greatly influenced by the surrounding temperature of the place where it is installed. Therefore, it seems that the illumination installation environment must be taken into consideration when selecting illumination. Further study was expected on order to aims at development of an exterior surface itself made into heat radiation plate by application of this technology in future.

A Study on Improving the Efficiency of a Heat Dissipation Design for 30 W COB LED Light Source (30 W COB LED광원의 효율 개선을 위한 방열설계에 관한 연구)

  • Seo, BumSik;Lee, KiJoung;Cho, Young Seek;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.158-163
    • /
    • 2013
  • In this paper, thermal analysis of heatsink for 30 W class Chip-on-Board (COB) LED light source is performed by using SolidWorks Flow Simulation package. In order to increase the convection heat transfer, number of fin and shape of the heatsink is optimized. Furthermore, a copper spread is applied between the COB LED light source and the heatsink to mitigate the heat concentration on the heatsink. With the copper spread, the junction temperature between the COB LED light source and the heatsink is $50.9^{\circ}C$, which is $5.4^{\circ}C$ lower than the heatsink without the copper spread. Due to the improvement of the junction temperature, the light output is improved by 5.8% when the LED light source is stabilized. The temperature difference between the simulation and measured result of the heatsink with the copper spread is within $2^{\circ}C$, which verifies the validity of the thermal design method using a simulation package.

Thermal Analysis and Optimization of 6.4 W Si-Based Multichip LED Packaged Module

  • Chuluunbaatar, Zorigt;Kim, Nam Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.3
    • /
    • pp.234-238
    • /
    • 2014
  • Multichip packaging was achieved the best solution to significantly reduce thermal resistance at the same time, to increase luminance intensity in LEDs packaging application. For the packaging, thermal spreading resistance is an important parameter to get influence the total thermal performance of LEDs. In this study, silicon-based multichip light emitting diodes (LEDs) packaged module has been examined for thermal characteristics in several parameters. Compared to the general conventional single LED packaged chip module, multichip LED packaged module has many advantages of low cost, low density, small size, and low thermal resistance. This analyzed module is comprised of multichip LED array, which consists of 32 LED packaged chips with supplement power of 0.2 W at every single chip. To realize the extent of thermal distribution, the computer-aided design model of 6.4 W Si-based multichip LED module was designed and was performed by the simulation basis of actual fabrication flow. The impact of thermal distribution is analyzed in alternative ways both optimizing numbers of fins and the thickness of that heatsink. In addition, a thermal resistance model was designed and derived from analytical theory. The optimum simulation results satisfies the expectations of the design goal and the measurement of IR camera results. tart after striking space key 2 times.