• Title/Summary/Keyword: W and Cu oxide composite powders

Search Result 5, Processing Time 0.024 seconds

A Study on the Reduction Mechanism of Tungsten and Copper Oxide Composite Powders (W-Cu산화물 복합분말의 환원 기구에 관한 연구)

  • Lee, Seong;Hong, Moon-Hee;Kim, Eun-Pyo;Lee, Sung-Ho;Noh, Joon-Woong
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.422-429
    • /
    • 2003
  • The reduction mechanism of the composite powders mixed with $WO_3$ and CuO has been studied by using thermogravimetry (TG), X-ray diffraction, and microstructure analyses. The composite powders were made by simple Turbula mixing, spray drying, and ball-milling in a stainless steel jar with the ball to powder ratio of 32 to 1 at 80 rpm for 1 h without process controlling agents. It is observed that all the oxide composite powders are converted to W-coated Cu composite powder after reducing treatment under hydrogen atmosphere. For the formation mechanism of W-coated Cu composite powder, the sequential reduction steps are proposed as follows: CuO contained in the ball-milled composite powder is initially reduced to Cu at the temperature range from 20$0^{\circ}C$ to 30$0^{\circ}C$. Then, $WO_3$ powder is reduced to W $O_2$ via W $O_{2.9}$ and W $O_{2.72}$ at higher temperature region. Finally, the gaseous phase of $WO_3(OH)_2$ formed by reaction of $WO_2$ with water vapour migrates to previously reduced Cu and deposits on it as W reduced by hydrogen. The proposed mechanism has been proved through the model experiment which was performed by using Cu plate and $WO_3$ powder.

Effect of Ball-milling Time on Reduction Behavior in Mechanochemical Process for Preparation of W-Cu Composite Powders (W-Cu 복합분말의 제조를 위한 기계화학적 공정에서 볼 밀링 시간에 따른 환원거동)

  • Kim, Dae-Gun;Lee, Kang-Won;Suk, Myung-Jin;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.169-173
    • /
    • 2003
  • W-Cu composite powders can be prepared by mechanochemical process, where the $WO_3$-CuO composite powders were mechanically synthesized from the elemental oxide powders and subsequently reduced to W-Cu composite powders. In the present work, reduction behavior of$ WO_3$-CuO composite powders that were synthesized at different milling time was examined in terms of hygrometric analysis. In case of $WO_3$-CuO ball-milled for 20 h, the reaction temperature of CuO\longrightarrowCu became lower than in case of 1 h. Also, the reaction of $WO_3$\longrightarrow$WO_{2.9-2.72}$ and $WO_{2.9-2.72}$ \longrightarrow$WO_2$were shifted to lower temperatures and the peaks were changed to much sharper shape. While the reaction of $WO_2$\longrightarrowW in case of ball-milling for 20 h started at lower temperature, the peak temperature was the same as in 1 h ball-milling. The reduced W particle size was somewhat finer fer 20 h ball-milling. It was considered that the refinement of oxide particles caused by ball-milling process leads to such a change in the reduction behavior.

Microstructure of W-Cu Composite Powders with Variation of Milling Method during Mechanochemical Process (기계화학적 공정의 밀링 방법에 따른 W-Cu 복합분말의 미세조직)

  • 이강원;김길수;김대건;김영도
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.329-335
    • /
    • 2002
  • Recently, the fabrication process of the W-Cu nanocomposite powders has been studied to improve the sinterability through the mechanical alloying and reduction of W and Cu oxide mixtures. In this study. the W-Cu composites were produced by mechanochemical process (MCP) using $WO_3-CuO$ mixtures with two different milling types of low and high energy, respectively. These ball-milled mixtures were reduced in $H_2$ atmosphere. The ball-milled and reduced powders were analyzed through XRD, SEM and TEM. The fine W-Cu powder could be obtained by the high energy ball-milling (HM) compared with the large Cu-cored structure powder by the low energy ball-milling (LM). After the HM for 20h, the W grain size of the reduced W-Cu powder was about 20-30 nm.

Electrical Contact Property of W-Cu Materials Manufactured from Nanocomposite Powder (초미립 복합분말로 제조된 W-Cu재료의 전기접점 특성)

  • 김태형
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.174-180
    • /
    • 1994
  • Electrical contact property of the W-20wt%Cu contact materials manufactured by liquid phase sintering of nanocomposite W-Cu powders was investigated and discussed in terms of microstructural development during performance test. Nanocomposite powders were prepared by hydrogen reduction of ball milled W-Cu oxide mixture. They underwent complete densification and microstructural homogenization during liquid phase sintering. As a consequence, the W-Cu contacts produced from nanocomposite powders showed superior contact property of lower arc erosion and stable contact resistance. This might be mostly due to the fact that the arc erosion by evaporation of Cu liquid droplets and surface cracking remarkably became weakened. It is concluded that the improvement of anti-arc erosion of the composite specimen is basically attributed to microstructural homogeneity.

  • PDF

Cathode Materials LaNi1−xCuxO3 for Low Temperature Solid Oxide Fuel Cells

  • Sun, Juncai;Wang, Chengli;Li, Song;Ji, Shijun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.755-759
    • /
    • 2008
  • New cathode materials $LaNi_{1-x}{Cu_x}{O_3}$ (typically $LaNi_{0.8}Cu_{0.2}O_3$) were synthesized using a co-precipitation method. The structure and morphology of the powders were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The composite material [$Ce_{0.8}Sm_{0.2}O_{2-\ddot{a}}$(SDC) and carbonate (${Na_2}{CO_3},{Li_2}{CO_3}$)], NiO and $LaNi_{1-x}{Cu_x}{O_3}$ were used as the electrolyte, anode and cathode, respectively. The electrochemical performance of La-Ni-Cu-O perovskite oxide at low temperatures ($400{\sim}550^{\circ}C$) was studied. The results showed that $LaNi_{0.8}Cu_{0.2}O_3$ precursor powder prepared through a co-precipitation method and calcined at $860^{\circ}C$ for 2 h formed uniform grains with diameters in the range of $400{\sim}500\;nm$. The maximum power density and the short circuit current density of the single cell unit at $550^{\circ}C$ were found to be $390\;mW/cm^2$ and $968\;mA/cm^2$, respectively.