• Title/Summary/Keyword: W/O/W multiple emulsion formulation

Search Result 8, Processing Time 0.018 seconds

Development of W/O/W Multiple Emulsion Formulation Containing Burkholderia gladioli

  • KIM, HWA-JIN;CHO, YOUNG-HEE;BAE, EUN-KYUNG;SHIN, TAEK-SU;CHOI, SUNG-WON;CHOI, KEE-HYUN;PARK, JI-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • W/O/W (water-in-oil-in-water) type multiple emulsion was applied to improve the storage stability of an antagonistic microorganism, Burkholderia gladioli. Encapsulation of microorganism into a W/O/W emulsion was conducted by using a two-step emulsification method. W/O/W emulsion was prepared by the incorporation of B. gladioli into rapeseed oil and the addition of polyglycerin polyriconolate (PGPR) and castor oil polyoxyethylene (COG 25) as the primary and secondary emulsifier, respectively. Microcrystalline cellulose was used as an emulsion stabilizer. To evaluate the usefulness of W/O/W emulsion formulation as a microbial pesticide for controlling the bacterial wilt pathogen (Ralstonia solanacearum), the storage stability and antagonistic activity of emulsion formulation were tested in vitro. The storage stability test revealed that the viability of formulated cells in emulsion was higher than that of unformulated cells in culture broth. At $4^{\circ}C$, the viabilities of formulated cells and unformulated cells at the end of 20 weeks decreased to about 2 and 5 log cycles, respectively. At $37^{\circ}C$, the viability of formulated cells decreased to only 2 log cycles at the end of storage. On the other hand, the viable cells in culture broth were not detected after 13 weeks. In activity test, formulated cells in emulsion were more effective in inhibiting the growth of pathogen than unformulated cells in culture broth. Unformulated cells completely lost their antagonistic activity during storage under similar conditions. The W/O/W multiple emulsion formulation was shown to be useful as the novel liquid formulation for biological control.

Studies on the Development of a Microbial Cryoprotectant Formulation Using a W/O/W Multiple Emulsion System

  • Bae, Eun-Kyung;Cho, Young-Hee;Park, Ji-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.673-679
    • /
    • 2004
  • A microbial cryoprotectant formulation using a W/O/W multiple emulsion system was developed. The psychrotolerant microorganism, B4, isolated from soil in South Korea, was observed by the drop freezing method, in which the microorganism sample inhibited ice nucleation activity. The antifreeze activity was eliminated when the microorganism sample was treated with protease, indicating that the antifreeze activity was due to the presence of antifreeze protein. The result of the l6S rDNA sequencing indicated the B4 strain was most closely related to a species of the genus Bacillus. Culture broth of B4 strain (Bacillus sp.) and rapeseed oil containing 1 % polyglycerine polyricinolate (PGPR) were used as core and wall material, respectively. The most stable W/O emulsion was prepared at a core/oil ratio of 1:2. The highest W/O/W emulsion stability was achieved when the primary emulsion to external aqueous phase containing 0.5% caster oil polyoxyethylene ether $(COG25^{TM})$ ratio was 1:1. Microcrystalline cellulose showed better W/O/W emulsion stability than other polymer types. The viability of cells in a W/O/W emulsion was higher than free cells during storage at $37^\circ{C}$. An acidic pH and UV exposure decreased the viability of free cells, but cells in W/O/W emulsion were more stable under these conditions.

Moisturizing Effect and Durability of Sun Protection Factor (UVA/B) Activity with Multiple Emulsion (W/O/W) System (멀티플 에멀전(W/O/W) 시스템을 이용한 자외선차단성능(UVA/B)의 내수성과 보습효과)

  • Lee, Myoung-Hee;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.339-347
    • /
    • 2015
  • This study is to evaluate moisturizing effect and durability of UV A/B blocking activity with multiple (W/O/W) emulsion system. Most of the sun protective products come to be hot issue having both high SPF and long-lasting activity as using special products when is going out, mountain climbing and sports. Also, many consumers prefer the products which have the excellent waterproofing activity of sun care cosmetics as well as the non-sticky feeling that carried out the study of the sensorial science and texture preference. Therefore, development of the specific formulation using this multiple (W/O/W) emulsion technology, it has O/W type hydro skin feel having soft and moist texture when it is treated on the skin. Finally, this formulation is instantly changed to W/O type feel after adsorbed into the skin. The purpose of this study is to get high SPF lasting effect having high water resistance tactivity with high functional multiple (W/O/W) emulsion cream. We used major ingredients, UV-B absorbers were selected with ethylhexyl methoxycinnamate, isoamyl-p-methoxycinnamate, ethylhexylsalicylate, and octocrylene, UV-A absorbers were selected with butylmethoxydibenzoylmethane, bis-ethylhexyloxyphenol methoxy phenyltriazine. SPF effect of O/W type cream was 34.1. SPF effect of W/O/W type cream was 40.6 (increased about 19%). Water resistance effect after 4 hours, SPF effect of O/W type cream was 3.6 (quickly drop down). SPF effect of W/O/W type cream having 81.0 % waterproofing effect was 32.7 (decreased about SPF 7.9). Moisturizing effect of O/W cream at first was superior comparing multiple emulsion. But after 3 hours quickly was drop-down. Moisturizing effect of multiple emulsion was high comparing O/W type and other sun block creams after 4 hours was constantly maintaining water-content.

A Study of Waterproofing Evaluation and Effect of UV Protection (UVB/UVA) of Multiple Emulsion Sunblock Cream using Sensory Engeeneering Science (감성공학을 적용한 다중에멀젼 선블록크림의 자외선차단(UVA/B) 효과와 내수성 평가 연구)

  • Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1517-1527
    • /
    • 2020
  • This study is about the UV protection effect and water resistance of a multiple emulsion (W/O/W) sunblock cream applied with emotional engineering and reports an actual industrial case. Multiple emulsion system of sunblock cream has the characteristics of changing to a W/O type that is soft and moist when applied, and has excellent water resistance after absorption. Multiple emulsion cream is a highly functional sunblock cream that has both moisture and water resistance. It is a stable milky white cream with a viscosity of 36,000 cps. The organic sunscreen used for the sunscreen was ethylhexylmethoxycinnamate and bisethylhexyloxyphenolmethoxyphenyltriazine. Hexagonal zinc oxide and titanium dioxide that block both UVB and UVA were used. As a result of measuring the UV protection effect by the in-vitro method, the UV protection effect (SPF) is 78.9 for multiple emulsion cream, 76.7 for W/O cream, and 71.3 for O/W cream. It was found that the blocking effect was different. This obtained the highest effect value in the multiple emulsion. As a clinical (in-vivo) result of the UV protection effect, the SPF value representing the UV protection effect of the sunblock cream developed with a multiple emulsion system was 85.7, and the PA-value that blocks the UVA area was 26.5, and ++++. It was found that it has a corresponding high blocking effect. As a result of the water resistance test, the W/O/W formulation had a high waterproofing resistance of 93.8% even after 4 hours, W/O had 75.4%, and O/W had a low water resistance of 25.3%. In the results of the HUT test, it was found in the order of multiple emulsion sun block cream > hydrophilic cream > lipophilic cream. Based on the research results of this multiple emulsion, it is expected to be highly active as a sunblock cream dedicated to outdoor activities by improving the feeling of use, UV protection index, and water resistance. Therefore, in this study, a multiple emulsion system of sunblock cream is developed and has a characteristic that changes to a W/O type that has a soft and moist feeling when applied, and has excellent water resistance after absorption.

Effects of Solvent Selection and Fabrication Method on the Characteristics of Biodegradable Poly(lactide-co-glycolide) Microspheres Containing Ovalbumin

  • Cho, Seong-Wan;Song, Seh-Hyon;Shoi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.385-390
    • /
    • 2000
  • To demonstrate the effect of formulation conditions on the controlled release of protein from poly(lactide-co-glycolide) (PLGA) microspheres for use as a parenteral drug carrier, ovalbumin (OVA) microspheres were prepared using the W/O/W multiple emulsion solvent evaporation and extraction method. Methylene chloride or ethyl acetate was applied as an organic phase and poly(vinyl alcohol) as a secondary emulsion stabilizer. Low loading efficiencies of less than 20% were observed and the in vitro release of OVA showed a burst effect in all batches of different microspheres, followed by a gradual release over the next 6 weeks. Formulation processes affected the size and morphology, drug content, and the controlled release of OVA from PLGA microspheres.

  • PDF

Comparison of Biological Activity between Nelumbo nucifera G. Extracts and Cosmetics Adding Nelumbo nucifera G. (백련(Nelumbo nucifera G.) 추출물 및 화장품에 첨가 시 생리활성 비교)

  • Lee, Jin-Young;Yu, Mi-Ra;An, Bong-Jeun
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1241-1248
    • /
    • 2010
  • The solvent extracts of Nelumbo nucifera G. were investigated for antioxidant activities, whitening and anti-wrinkle effects to apply as a functional ingredient in cosmetic products. For their industrial application, the cosmetic products were also prepared with advanced formulation techniques such as W/O/W multiple emulsion. Total phenolic and flavonoids contents increased in Nelumbo nucifera G.-Leaf (NN-L). The electron donating ability of Nelumbo nucifera G.-Flower (NN-F) or Nelumbo nucifera G.-Leaf (NN-L) extracts were above 85% at a concentration of 500 ppm. The superoxide dismutase (SOD)-like activity of Nelumbo nucifera G. (NN-L) extracts was about 60% at a concentration of 1,000 ppm. The xanthine oxidase inhibitory effect of NN-L extract was higher than that of NN-F and NN-S extracts. The tyrosinase inhibitory effect, which is related to skin-whitening, was 36% in NN-F at 1,000 ppm. For anti-wrinkle effect, the elastase inhibition activity of NN-L was about 30% at 1,000 ppm. The results of stability test showed that W/O/W multiple emulsion (ME) containing Nelumbo nucifera G. extracts. The electron donating ability of the ME containing NN-F and NN-L were about 60% at a concentration of 100 ppm. The superoxide dismutase (SOD)-like activity of the ME containing NN-L was 30% at 1,000 ppm. The tyrosinase inhibitory effect, which is related to skin-whitening, was 34% in the ME containing NN-F at 1,000 ppm. In anti-wrinkle effect, the elastase inhibition activity of the ME containing NN-L was about 55% at 1,000 ppm.

Effects of Preparation Method and Evaluations on Structural Integrity in Model Antigen-Containing Biodegradable Microspheres for Vaccine Delivery

  • Cho Seong-Wan;Kim Young-Kwon
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.177-183
    • /
    • 2006
  • To demonstrate the effect of formulation conditions and evaluations of structural integrity from ovalbumin containing poly lactide glycolide copolymer (PLGA) microspheres for Vaccine delivery, OVA microspheres were prepared by a W/O/W multiple emulsion solvent extraction technique. Dichloromethan (DCM) and Ethyl acetate (EA) were applied as an organic phase and poly vinyl alcohol (PVA) as a secondary emulsion stabilizer. Microspheres were characterized for particle size, morphology (optical microscopy and Scanning Electron Microscope (SEM)). Protein denaturation was evaluated by size exclusion chromatography (SEC), SDS-PAGE and isoelectric focusing (IEF). Residual organic solvent was estimated by gas chromatography (GC) and differential scanning calorimetry (DSC). Optical photomicrograph and SEM revealed that micro spheres were typically spherical but various morphologies were observed. Mean particle size $(d_{vs})$ of microspheres were in the range of $3{\sim}50{\mu}m$. Also, The protein stability was not affected by the fonnulation process and residual organic solvent was beyond the detection below 0.1ppm. These results demonstrated that micro spheres might be a good candidate for the parenteral vaccine delivery system.

  • PDF

Increased Water Resistance and Adhesion Force to Skin through the Hybrid of Fatty Acid Ester and Titanium Dioxide (지방산 에스테르와 티타늄다이옥사이드의 복합화를 통한 내수성과 피부 밀착력 개선)

  • Ji Yeon Hong;Chi Je Park;Yong Woo Kim;Sang Keun Han;Sung Bong Kye;Ho Sik Roh;Soo Nam Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.247-258
    • /
    • 2023
  • This study aims to investigate the enhancement of water resistance and improvement in adhesion to the skin by combining dextrin palmitate and isopropyl titanium triisostearate coating materials with titanium dioxide. Due to the recent increase in consumers who enjoy outdoor activities, the demand for sunscreen with excellent water resistance is increasing. Prior research was conducted with O/W, Pickering, and W/O/W multiple formulations, but there was a limit to water resistance. The purpose of this study is to develop a complex inorganic powder that can improve water resistance and increase adhesion to the skin to solve this problem. First, we combined dextrin palmitate and isopropyl titanium triisostearate coating materials to form a composite with titanium dioxide. The coating of the inorganic powder was confirmed using FE-SEM and FT-IR analysis. The composite exhibited significantly higher in vitro water resistance compared to other formulations. The hydrophobicity of the coated inorganic powder was compared by measuring the contact angles. When the coated inorganic powder was applied to the W/O sunscreen formulation and the non-coated inorganic powder was applied to the W/O sunscreen formulation as a control, the SPF of the sunscreen containing the coated inorganic powder was higher. These results were the same when observed with a UV camera. Finally the adhesion of the coated inorganic powder to the skin was assessed by applying it to a foundation product. In vivo study, it was observed that the product formulated with the coated powder exhibited less smudging compared to the foundation product formulated with the non-coated powder. The developed inorganic powder in this study demonstrated excellent adhesion to the skin, providing a superior sensory experience, as well as enhanced hydrophobicity and remarkable water resistance effects. In the future, the result of this study is expected to help develop various sunscreen products to improve water resistance.