• Title/Summary/Keyword: W/Cu joint

Search Result 32, Processing Time 0.051 seconds

A Study on Friction weldability of Copper-Tungsten Sinterd Alloy to Copper (WCu-Cu 전기접점의 마찰용접 특성 연구)

  • An, Y.H.;Yoon, G.G.;Min, T.K.;Han, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1934-1937
    • /
    • 1999
  • A copper-tungsten sintered alloy(Cu-W) has been friction-welded to a tough pitch copper (Cu) in order to investigate friction weldability. The tensile strength of the friction welded joint was increased up to 87% of the Cu base metal under the condition of friction time 1.0 see, friction pressure 40MPa and upset pressure 100MPa, upset time 5.0 sec. And it is related to upset pressure rather than friction time. Mixed layer was formed in the Cu adjacent weld interface and W particles which were included in mixed layer could induce fracture in the Cu adjacent to the weld interface. Thickness of mixed layer was reduced as upset pressure increase.

  • PDF

Evaluating Nanomechanical Properties on Interface of Friction-welded TiAl and SCM440 Alloys with Cu as an Insert Metal (삽입금속 Cu를 적용한 TiAl 합금과 SCM440의 마찰용접 계면의 나노역학물성 평가)

  • Kim, Ki-Young;Oh, Myung-Hoon;Choi, In-Chul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.309-314
    • /
    • 2021
  • Due to the superior corrosion resistance and mechanical properties of TiAl alloy at high temperature, it has been utilized as a turbine wheel of a turbocharger. The dissimilar metallic bonding is usually applied to combine the TiAl turbine wheel with the SCM440 structural steel which is used as a driving shaft. In this study, the TiAl and SCM440 joint were fabricated by using a friction welding technique. During bonding process, to suppress the martensitic transformation and the formation of cracks, which might reduce a strength of the joints, Cu was used as an insert metal to relieve stress. As a result, the intermetallic compounds (IMCs) layer was observed at TiAl/Cu interface while no IMC formation was formed at SCM440/Cu interface. Since understanding of the IMCs effects on the mechanical performance of welded joint is also essential for ensuring the reliability and integrity of the turbocharger system, we estimated the nanohardness of welded joint region through nanoindentation. The relation between the microstructural feature and its mechanical property is discussed in detail.

A Study on the Interfacial Bonding in AlN Ceramics/Metals Joints: I. Residual Stress Analysis of AlN/Cu and AlN/W Joints Produced by Active-Metal Brazing (AlN 세라믹스와 금속간 계면접합에 관한 연구 : I. AlN/Cu 및 AlN/W 활성금속브레이징 접합체의 잔류응력 해석)

  • Park, Sung-Gye;Lee, Seung-Hae;Kim, Ji-Soon;You, Hee;Yum, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.962-969
    • /
    • 1999
  • Elastic and elasto-plastic stress analyses of AlN/Cu and AlN/W pints produced by active-metal brazing method using Ag-Cu-Ti insert-metal were performed with use of Finite-Element-Method(FEM). The results of stress analyses were compared with those from the pint strength tests and the observations of fracture behaviors. It was shown that a remarkably larger maximum principal stress is built in the AlN/Cu pint compared to the A1N/ W joint. Especially, the stress concentration with tensile component was confirmed at the free surface close to the bonded interface of AlN/Cu. The elasto-plastic analysis under consideration of stress relaxation effect of Ag-Cu-Ti insert possessing a so-called 'soft-metal effect' showed that the insert leads to a lowering of maximum principal stress in AlNiCu pint, even though an increase of the insert thickness above 100$\mu\textrm{m}$ could not bring its further decrease. The maximum pint strengths measured by shear test were 52 and 108 MPa for AlNiCu and AlN/W pints. respectively. Typical fractures of AlN/Cu pints occurred in a form of 'dome' which initiated from the free surface of AlN close to the bonded interface and proceeded towards the AlN inside forming a large angle. AlN/W pints were usually fractured at AlN side along the interface of AlN/insert-metal.

  • PDF

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Study on the effect of vacuum fusion infiltration technology on the properties of tungsten/copper joining interface

  • Hao-Jie Zhang;Xue-qin Tian;Xiao-Yu Ding;Hui-Yun Zheng;Lai-Ma Luo;Yu-Cheng Wu;Jian-Hua Yao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2367-2374
    • /
    • 2024
  • In this paper, based on the need for high-strength connections between all-tungsten-oriented plasma materials and thermal sinking materials of copper and its alloys in nuclear fusion devices, a study on the effect of tungsten surface laser micro structuring on the interfacial bonding properties of W/Cu joints was carried out. In the experiment, the connectors were prepared by vacuum fusion infiltration technology, and the effects of microgroove structure on the mechanical and thermal conductivity of W/Cu connectors were investigated under different parameters (including microgroove pitch, microgroove depth, and microgroove taper). The maximum shear strength is 126.0 MPa when the pitch is 0.15 mm and the depth is 34 ㎛. In addition, the negative taper structure, i.e., the width of the entrance of the microstructure is smaller than the width of the interior of the microstructure, is also investigated. The shear tests show that there is an approximately linear relationship between the shear strength of W/Cu and taper. Compared with the positive taper, the shear strength of the samples with the same morphological density and depth of the tungsten surface is significantly higher.

A Study on Solderability of Sn-Ag-Cu Solder with Plated Layers in ʼn-BGA (ʼn-BGA에서 Sn-Ag-Cu 솔더의 도금층에 따른 솔더링성 연구)

  • 신규식;정석원;정재필
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.59-59
    • /
    • 2002
  • Sn-Ag-Cu solder is known as most competitive in many kinds of Pb-free solders. In this study, effects of solderability with plated layers such as Cu, Cu/Sn, Cu/Ni and Cu/Ni/Au were investigated. Sn-3.5Ag-0.7Cu solder balls were reflowed in commercial reflow machine (peak temp. : 250℃ and conveyer speed : 0.6m/min). In wetting test, immersion speed was 5mm/sec., immersion time 5sec., immersion depth 4mm and temperature of solder bath was 250℃. Wettability of Sn-3.5Ag-0.7Cu on Cu, Cu/Sn (5㎛), Cu/Ni (5㎛), and Cu/Ni/Au (5㎛/500Å) layers was investigated. Cu/Ni/Au layer had the best wettability as zero cross time and equilibrium force, and the measured values were 0.93 sec and 7mN, respectively. Surface tension of Sn-3.5Ag-0.7Cu solder turmed out to be 0.52N/m. The thickness of IMC is reduced in the order of Cu, Cu/Sn, Cu/Mi and Cu/Ni/Au coated layer. Shear strength of Cu/Ni, Cu/Sn and Cu was around 560gf but Cu/Ni/Au was 370gf.

Improvement of superconducting joint between NbTi filamentary wires (NbTi 초전도 선의 접합 조건 변화에 따른 임계전류 특성 향상 연구)

  • Ha, D.W.;Shim, K.D.;Jang, H.M.;Ha, H.S.;Oh, S.S.;Kwon, Y.K.;Ryu, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1521-1523
    • /
    • 2000
  • NbTi/Cu superconducting wires were jointed inserting the NbTi filaments into Cu/NbTi sleeve and pressing it. When the NbTi filaments were inserted into Cu/NbTi sleeve additional NbTi filaments were inserted together to increase the numbers of filaments in the hole of sleeve. The thickness of sleeves and dimples were changed to get optimal factor for high Ic of joint Critical current of the joint with additional NbTi Filaments and 17mm thickness of dimple was 450 A at 4.2K, 0.5T.

  • PDF

Aging Characteristics of Solder bump Joint for High Reliability Optical module (광모듈 솔더 접합부의 시효 특성에 관한 연구)

  • Kim, Nam-Kyu;Kim, Kyung-Seob;Kim, Nam-Hoon;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.204-207
    • /
    • 2003
  • The flip chip bonding utilizing self-aligning characteristic of solder becomes mandatory to meet to tolerances for the optical device. In this paper, a parametric study of aging condition and pad size of sample was conducted. A TiW/Cu UBM structure was adopted and sample was aging treated to analyze the effect of intermetallic compound with time variation. After aging treatment, the tendency to decrease in shear strength was measured and the structure of the fine joint area was observed by using SEM, TEM and EDS. In result, the shear strength was decreased of about 20% in the $100{\mu}m$ sample at $170^{\circ}C$ aging compared with the maximum shear strength of same pad size sample. In the case of the $120^{\circ}C$ aging treatment, 17% of decrease in shear strength was measured at the $100{\mu}m$ pad size sample. Also, intremetallic compound of $Cu_6Sn_5$ and $Cu_3Sn$ were observed through the TEM measurement by using an FIB technique that is very useful to prepare TEM thin foil specimens from the solder joint interface.

  • PDF

Growth of Intermetallic Compounds by Heat Treatment at Interface of Friction Welded Al-Cu System (Cu-Al 마찰용접 접합부 계면에서 열처리에 따른 금속간화합물 성장)

  • Kim, Ki-Young;Choi, In-Chul;ITO, Kazuhiro;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.79-85
    • /
    • 2019
  • To investigate the influence of heat treatment on the growth intermetallic compounds (IMCs) at the joint interface of friction-welded Cu-Al, several heat treatments are performed at three different temperature with different times. The experiments reveal three different IMCs layers which are significantly influenced by atomic diffusion of Cu and Al with heat treatment conditions. Since the formation of these IMCs layers can affect mechanical properties of friction-welded Cu-Al interfaces, the relationship between the microstructure of IMCs layers and the tensile strength is analyzed according to heat treatment temperature and times.

Standardization of the Important Test Parameters in the Solder Ball Shear Test for Evaluation of the Mechanical Joint Strength

  • Kim J. W.;Koo J. M.;Lee W. B.;Moon W. C.;Moon J. H.;Yeon Y. M.;Shur C. C.;Jung S. B.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.15-28
    • /
    • 2005
  • The ball shear test was investigated in terms of the effects of test parameters, i.e., shear height and shear speed, with an experimental and non-linear finite element analysis for evaluating the solder joint integrity of area array packages. Two representative Pb-free solder compositions were examined in this work: Sn-3.5Ag-0.75Cu and In-48Sn. The substrate was a common SMD type with solder bond pad openings of 460 $\mu$m in diameter. The microstructural investigations were carried out using SEM, and the IMCs were identified with EDS. Shear tests were conducted with the two varying test parameters. It could be observed that increasing shear height, at fixed shear speed, has the effect of decreasing shear force for both Sn-3.5Ag-0.75Cu and In-48Sn solder joints, while the shear force increased with increasing shear speed at fixed shear height. Too high shear height could cause some undesirable effects on the test results such as unexpected high standard deviation values or shear tip sliding from the solder ball. The low shear height conditions were favorable for screening the type of brittle interfacial fractures or the degraded layers in the interfaces. The shear speed conditions were discussed with the stress analyses of the solder ball, and we cannot find any conspicuous finding which is related to optimum shear speed from the stress analyses.

  • PDF