• Title/Summary/Keyword: Vulnerability of Code

Search Result 153, Processing Time 0.022 seconds

Seismic fragility analysis of RC frame-core wall buildings under the combined vertical and horizontal ground motions

  • Taslimi, Arsam;Tehranizadeh, Mohsen;Shamlu, Mohammadreza
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.175-185
    • /
    • 2021
  • This study strives to highlight the importance of considering the vertical ground motions (VGM) in the seismic evaluation of RC buildings. To this aim, IDA (Incremental Dynamic Analysis) is conducted on three code-based designed high-rise RC frame-core wall buildings using a suite of earthquake records comprising of significant VGMs. To unravel the significance of the VGM inclusion on the performance of the buildings, IDAs are conducted in two states (with and without the vertical component), and subsequently based on each analysis, fragility curves are developed. Non-simulated collapse criteria are used to determine the collapse state drift ratio and the area under the velocity spectrum (SIm) is taken into account as the intensity measure. The outcome of this study delineates that the inclusion of VGM leads to the increase in the collapse vulnerability of the structures as well as to the change in the pattern of inter-story drifts and failure mode of the buildings. The results suggested that it would be more conservative if the VGM is included in the seismic assessment and the fragility analysis of RC buildings.

Effects of numerical modeling simplification on seismic design of buildings

  • Raheem, Shehata E Abdel;Omar, Mohamed;Zaher, Ahmed K Abdel;Taha, Ahmed M
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.731-753
    • /
    • 2018
  • The recent seismic events have led to concerns on safety and vulnerability of Reinforced Concrete Moment Resisting Frame "RC-MRF" buildings. The seismic design demands are greatly dependent on the computational tools, the inherent assumptions and approximations introduced in the modeling process. Thus, it is essential to assess the relative importance of implementing different modeling approaches and investigate the computed response sensitivity to the corresponding modeling assumptions. Many parameters and assumptions are to be justified for generation effective and accurate structural models of RC-MRF buildings to simulate the lateral response and evaluate seismic design demands. So, the present study aims to develop reliable finite element model through many refinements in modeling the various structural components. The effect of finite element modeling assumptions, analysis methods and code provisions on seismic response demands for the structural design of RC-MRF buildings are investigated. where, a series of three-dimensional finite element models were created to study various approaches to quantitatively improve the accuracy of FE models of symmetric buildings located in active seismic zones. It is shown from results of the comparative analyses that the use of a calibrated frame model which was made up of line elements featuring rigid offsets manages to provide estimates that match best with estimates obtained from a much more rigorous modeling approach involving the use of shell elements.

Fragility assessment of RC-MRFs under concurrent vertical-horizontal seismic action effects

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Mansouri, Babak
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.99-123
    • /
    • 2015
  • In this study, structural vulnerability of reinforced concrete moment resisting frames (RC-MRFs) by considering the Iran-specific characteristics is investigated to manage the earthquake risk in terms of multicomponent seismic excitations. Low and medium rise RC-MRFs, which constitute approximately 80-90% of the total buildings stock in Iran, are focused in this fragility-based assessment. The seismic design of 3-12 story RC-MRFs are carried out according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800), and the analytical models are formed accordingly in open source nonlinear platforms. Frame structures are categorized in three subclasses according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Iran. Both far and near fields' ground motions have been considered in the fragility estimation. An optimal intensity measure (IM) called Sa, avg and beta probability distribution were used to obtain reliable fragility-based database for earthquake damage and loss estimation of RC buildings stock in urban areas of Iran. Nonlinear incremental dynamic analyses by means of lumped-parameter based structural models have been simulated and performed to extract the fragility curves. Approximate confidence bounds are developed to represent the epistemic uncertainties inherent in the fragility estimations. Consequently, it's shown that including vertical ground motion in the analysis is highly recommended for reliable seismic assessment of RC buildings.

Enhanced Message Authentication Encryption Scheme Based on Physical-Layer Key Generation in Resource-Limited Internet of Things

  • Zeng Xing;Bo Zhao;Bo Xu;Guangliang Ren;Zhiqiang Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2546-2563
    • /
    • 2024
  • The Internet of Things (IoT) is facing growing security challenges due to its vulnerability. It is imperative to address the security issues using lightweight and efficient encryption schemes in resource-limited IoT. In this paper, we propose an enhanced message authentication encryption (MAE) scheme based on physical-layer key generation (PKG), which uses the random nature of wireless channels to generate and negotiate keys, and simultaneously encrypts the messages and authenticates the source. The proposed enhanced MAE scheme can greatly improve the security performance via dynamic keyed primitives construction while consuming very few resources. The enhanced MAE scheme is an efficient and lightweight secure communication solution, which is very suitable for resource-limited IoT. Theoretical analysis and simulations are carried out to confirm the security of the enhanced MAE scheme and evaluate its performance. A one-bit flipping in the session key or plain texts will result in a 50%-bit change in the ciphertext or message authentication code. The numerical results demonstrate the good performance of the proposed scheme in terms of diffusion and confusion. With respect to the typical advanced encryption standard (AES)-based scheme, the performance of the proposed scheme improves by 80.5% in terms of algorithm execution efficiency.

A Study of Program Execution Control based on Whitelist (화이트리스트 기반 프로그램 실행 통제 방안 연구)

  • Kim, Chang-hong;Choi, Dae-young;Yi, Jeong-hyun;Kim, Jong-bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.346-349
    • /
    • 2014
  • Currently, the growing cyber threat continues, the damage caused by the evolution of malicious code incidents become more bigger. Such advanced attacks as APT using 'zero-day vulnerability' bring easy way to steal sensitive data or personal information. However it has a lot of limitation that the traditional ways of defense like 'access control' with blocking of application ports or signature base detection mechanism. This study is suggesting a way of controlling application activities focusing on keeping integrity of applications, authorization to running programs and changes of files of operating system by hardening of legitimate resources and programs based on 'white-listing' technology which analysis applications' behavior and its usage.

  • PDF

A study on Merchant Ship′s Security System for the Correspondence of Maritime Security Threats (해양보안위협 대응을 위한 선박보안시스템에 관한 연구)

  • 이은방
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • With the terrorist attacks on 11 September 2001, the ships and their crew' safety and security have become a major issue in the maritime industries, In high-risk terrorism, not only ship owners and port authorities but also crew members on board should take precautions in the conduct of their business. In this paper, the vulnerability and essential elements in overall security of merchant ship are analyzed with a discussion in depth of the concept and principles of maritime security of merchant ship are analyzed with a discussion in depth of the concept and principles of maritime security management. And then, ship's security model and security system to reduce security rish and to minimize damage are proposed.

  • PDF

String analysis for detection of injection flaw in Web applications (웹 응용프로그램의 삽입취약점 탐지를 위한 문자열분석)

  • Choi, Tae-Hyoung;Kim, Jung-Joon;Doh, Kyung-Goo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.6
    • /
    • pp.149-153
    • /
    • 2007
  • One common type of web-application vulnerabilities is injection flaw, where an attacker exploits faulty application code instead of normal input. In order to be free from injection flaw, an application program should be written in such a way that every potentially bad input character is filtered out. This paper proposes a precise analysis that statically checks whether or not an input string variable may have the given set of characters at hotspot. The precision is accomplished by taking the semantics of condition into account in the analysis.

Separate Signature Monitoring for Control Flow Error Detection (제어흐름 에러 탐지를 위한 분리형 시그니처 모니터링 기법)

  • Choi, Kiho;Park, Daejin;Cho, Jeonghun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.225-234
    • /
    • 2018
  • Control flow errors are caused by the vulnerability of memory and result in system failure. Signature-based control flow monitoring is a representative method for alleviating the problem. The method commonly consists of two routines; one routine is signature update and the other is signature verification. However, in the existing signature-based control flow monitoring, monitoring target application is tightly combined with the monitoring code, and the operation of monitoring in a single thread is the basic model. This makes the signature-based monitoring method difficult to expect performance improvement that can be taken in multi-thread and multi-core environments. In this paper, we propose a new signature-based control flow monitoring model that separates signature update and signature verification in thread level. The signature update is combined with application thread and signature verification runs on a separate monitor thread. In the proposed model, the application thread and the monitor thread are separated from each other, so that we can expect a performance improvement that can be taken in a multi-core and multi-thread environment.

A Study on the Effect of Format String on Secure Programming in C Language (C언어에서 포맷 스트링이 프로그램 보안에 미치는 영향)

  • Lee, Hyung-Bong;Cha, Hong-Jun;Choi, Hyung-Jin
    • The KIPS Transactions:PartC
    • /
    • v.8C no.6
    • /
    • pp.693-702
    • /
    • 2001
  • One of the major characteristics of C language is that it allows us to use pointer type variables to access any area of virtual address space. So, we can read/write/execute from/to virtual memory area not controlled delicately by operating system. We can access such memory area by using format string and it can be a vulnerability of C language from the point of secure programming. In this paper, we analyze in detail the process of security attack based on format string and then exploit a new virus style attack which is stepwise and durable with some actual scenarios to warn the severity of it, and grope for some preliminary responding actions.

  • PDF

Application of Machine Learning Techniques for the Classification of Source Code Vulnerability (소스코드 취약성 분류를 위한 기계학습 기법의 적용)

  • Lee, Won-Kyung;Lee, Min-Ju;Seo, DongSu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.735-743
    • /
    • 2020
  • Secure coding is a technique that detects malicious attack or unexpected errors to make software systems resilient against such circumstances. In many cases secure coding relies on static analysis tools to find vulnerable patterns and contaminated data in advance. However, secure coding has the disadvantage of being dependent on rule-sets, and accurate diagnosis is difficult as the complexity of static analysis tools increases. In order to support secure coding, we apply machine learning techniques, such as DNN, CNN and RNN to investigate into finding major weakness patterns shown in secure development coding guides and present machine learning models and experimental results. We believe that machine learning techniques can support detecting security weakness along with static analysis techniques.