• Title/Summary/Keyword: Vulnerability Discovery Model

Search Result 4, Processing Time 0.02 seconds

Extended Linear Vulnerability Discovery Process

  • Joh, HyunChul
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2017
  • Numerous software vulnerabilities have been found in the popular operating systems. And recently, robust linear behaviors in software vulnerability discovery process have been noticeably observed among the many popular systems having multi-versions released. Software users need to estimate how much their software systems are risk enough so that they need to take an action before it is too late. Security vulnerabilities are discovered throughout the life of a software system by both the developers, and normal end-users. So far there have been several vulnerability discovery models are proposed to describe the vulnerability discovery pattern for determining readiness for patch release, optimal resource allocations or evaluating the risk of vulnerability exploitation. Here, we apply a linear vulnerability discovery model into Windows operating systems to see the linear discovery trends currently observed often. The applicability of the observation form the paper show that linear discovery model fits very well with aggregate version rather than each version.

Empirical Risk Assessment in Major Graphical Design Software Systems

  • Joh, HyunChul;Lee, JooYoung
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.259-266
    • /
    • 2021
  • Security vulnerabilities have been reported in major design software systems such as Adobe Photoshop and Illustrator, which are recognized as de facto standard design tools in most of the design industries. Companies need to evaluate and manage their risk levels posed by those vulnerabilities, so that they could mitigate the potential security bridges in advance. In general, security vulnerabilities are discovered throughout their life cycles repeatedly if software systems are continually used. Hence, in this study, we empirically analyze risk levels for the three major graphical design software systems, namely Photoshop, Illustrator and GIMP with respect to a software vulnerability discovery model. The analysis reveals that the Alhazmi-Malaiya Logistic model tends to describe the vulnerability discovery patterns significantly. This indicates that the vulnerability discovery model makes it possible to predict vulnerability discovery in advance for the software systems. Also, we found that none of the examined vulnerabilities requires even a single authentication step for successful attacks, which suggests that adding an authentication process in software systems dramatically reduce the probability of exploitations. The analysis also discloses that, for all the three software systems, the predictions with evenly distributed and daily based datasets perform better than the estimations with the datasets of vulnerability reporting dates only. The observed outcome from the analysis allows software development managers to prepare proactively for a hostile environment by deploying necessary resources before the expected time of vulnerability discovery. In addition, it can periodically remind designers who use the software systems to be aware of security risk, related to their digital work environments.

Modeling Vulnerability Discovery Process in Major Cryptocurrencies

  • Joh, HyunChul;Lee, JooYoung
    • Journal of Multimedia Information System
    • /
    • v.9 no.3
    • /
    • pp.191-200
    • /
    • 2022
  • These days, businesses, in both online and offline, have started accepting cryptocurrencies as payment methods. Even in countries like El Salvador, cryptocurrencies are recognized as fiat currencies. Meanwhile, publicly known, but not patched software vulnerabilities are security threats to not only software users but also to our society in general. As the status of cryptocurrencies has gradually increased, the impact of security vulnerabilities related to cryptocurrencies on our society has increased as well. In this paper, we first analyze vulnerabilities from the two major cryptocurrency vendors of Bitcoin and Ethereum in a quantitative manner with the respect to the CVSS, to see how the vulnerabilities are roughly structured in those systems. Then we introduce a modified AML vulnerability discovery model for the vulnerability datasets from the two vendors, after showing the original AML dose not accurately represent the vulnerability discovery trends on the datasets. The analysis shows that the modified model performs better than the original AML model for the vulnerability datasets from the major cryptocurrencies.

Assessing Web Browser Security Vulnerabilities with respect to CVSS

  • Joh, HyunChul
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.2
    • /
    • pp.199-206
    • /
    • 2015
  • Since security vulnerabilities newly discovered in a popular Web browser immediately put a number of users at risk, urgent attention from developers is required to address those vulnerabilities. Analysis of characteristics in the Web browser vulnerabilities can be used to assess security risks and to determine the resources needed to develop patches quickly to handle vulnerabilities discovered. So far, being a new research area, the quantitative aspects of the Web browser vulnerabilities and risk assessments have not been fully investigated. However, due to the importance of Web browser software systems, further detailed studies are required related to the Web browser risk assessment, using rigorous analysis of actual data which can assist decision makers to maximize the returns on their security related efforts. In this paper, quantitative software vulnerability analysis has been presented for major Web browsers with respect to the Common Vulnerability Scoring System. Further, vulnerability discovery trends in the Web browsers are also investigated. The results show that, almost all the time, vulnerabilities are compromised from remote networks with no authentication required systems. It is also found that a vulnerability discovery model which was originally introduced for operating systems is also applicable to the Web browsers.