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I. INTRODUCTION  

 

Software tools can assist designers to express their 

creative ideas effectively and productively in a digital 

manner. Software systems such as Adobe Photoshop is 

extremely popular so that most of graphic designers in 

related industries consider it as one of the virtues they must 

handle with. Those industries are usually contents driven 

industries, such as visual, industrial and fashion designs.  

Meanwhile, a software vulnerability is a weak point in 

the structure which could be exploited by malicious system 

users causing loss or harm [1]. A publicly known software 

vulnerability which is not patched represents security risk 

and the potential risk might cause significant damages in 

both financially and reputably to the related parties. Also, 

vulnerabilities unknown to the public sometimes are traded 

for bad purposes [2]. Those software vulnerabilities are 

frequently created as a result of coding mistakes by 

software developers. After its creation, a software 

vulnerability could be discovered by any kinds of software 

tests, or if it’s lucky, it might not be discovered forever.  

If it is discovered by benevolent users, then the 

vulnerability will be reported to the corresponding software 

vendor, and we will expect a proper patch. Typically, it 

takes about a month or so for developing a patch from the 

time when a vulnerability is reported [3]. However, if 

malicious users find the security bugs, there could be high 

probabilities that the vulnerabilities will be exploited for 

their own benefits, mostly economic gains.  

The vulnerability discovery rate could be roughly 

projected by vulnerability discovery models (VDM) for a 

given software system if it has enough datasets [4]. 

Malicious users also could secretly release the vulnerability 

information to black hat communities which will lead to 

proliferous exploitations. If a flawless patch is available, 

then the vulnerability is no more considered as a threat. Of 

course, users must apply the patch into their system, not to 

be a victim. However, sometimes a security patch itself 

introduces a new vulnerability. 
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Despite the high reputations of Adobe Photoshop, every 

now and then, vulnerabilities have been reported in its 

system. Those vulnerabilities are dangerous, and 

sometimes even fatal, since they provide privileges 

controlling the designers’ computer systems to hackers. 

Those privileges could lead to leakages of unrevealed 

precious design outputs or sensitive personal information. 

As a result, considerable fears of very possible cyber-

attacks are subjects to security researchers’ and related 

industrial workers’ attentions. 

Overall security risk should stay under certain acceptable 

degrees in order not to be a target for a possible cyber-attack. 

To manage their security risk under control, system 

administrators need to somehow figure that out how much 

their organizations put up with potential risks. That is 

because if we want to improve our circumstances, somehow, 

we should be able to measure the problem in specific 

numbers. 

In this paper, we are examining the three major graphical 

design software systems, namely Adobe Photoshop, 

Illustrator, and GIMP (GNU Image Manipulation Program) 

from a software security point of view in a quantitative 

manner. Photoshop and Illustrator are initially presented by 

Adobe in 1987 and 1990, respectively, while GIMP project, 

which is free and open-source software, was initially started 

as a school semester project at the University of California, 

Berkeley, and it was publicly available in 1996. Because it 

is free and open-source software, GIMP has been instantly 

adopted and pulled many kinds of contributors from 

software developers to design artists. The two Adobe 

systems can be installed on Windows and macOS, while 

GIMP has more options when it comes to its host operating 

systems. All three of them significantly have been 

expanded since their first releases. 

Even though there have been numerous studies related to 

the software vulnerabilities, graphical software tools have 

not been one of those subjects of discussions so far. 

Moreover, most of the research related to the software 

vulnerabilities has been performed in a qualitative approach, 

and they have focused on detecting or preventing a specific 

vulnerability. Since entering the 2000s, security researchers 

started to examine major software products, such as 

operating systems, Web browsers and servers in a 

quantitative manner [5, 6]. That is because, in the early days 

of the software era, there were not enough vulnerability 

datasets, so it is hard to study in a quantitative manner. Here, 

the software vulnerability datasets for the three systems 

were extracted in June 2020 from the cvedetail.com. 

In this paper, we have tried to answer the three questions 

following. First, whether the AML vulnerability discovery 

model, which was originally proposed for an operating 

system, can be utilized for the major graphical design tools 

or not. Second, how to reduce successful attacks by using 

the information from vulnerabilities. And third, what kind 

of dataset should be used for the best performance of the 

vulnerability discovery predictions. 

The analysis here provides answers for the three 

questions above. First, we reveal that the AML model can 

describe the vulnerability discovery patterns for the 

graphical software systems. Second, adding an 

authentication process in software systems dramatically 

reduce the probability of exploitations. And third, 

predictions with evenly distributed and daily based datasets 

perform better than estimations with the datasets of 

vulnerability reporting dates only. 

The remainder of the paper is organized as follows. In 

Section 2, some of the related studies are presented. In 

Section 3, vulnerability discovery processes are examined. 

Also, in the section, vulnerability analysis with the respect 

to the Common Vulnerability Scoring System is given. In 

Section 4, the prediction capabilities of the AML 

vulnerability discovery model will be investigated. Finally, 

Section 5 concludes this paper. 

 

II. RELATED WORKS 

 
  An Internet security company, Qualys, once released a 

software vulnerability related paper based on empirical 

studies [7]. In the report, they identified the “Laws of 

Vulnerabilities” of four distinct and quantifiable attributes: 

half-life, prevalence, persistence, and exploitation. The 

half-life reveals a time period for reducing incidence of a 

vulnerability by half, and the study found that average 

duration of a half-life is approximately a month long, 

differing by industry. The prevalence measures the turnover 

rate of vulnerabilities in the topmost prevalent 20 security 

bugs. The persistence attribute measures the entire life span 

of vulnerabilities, and it apparently continues technically 

unlimited. Finally, the last attribute of exploitation shows 

time interval between an exploit announcement and the first 

attack. They found that the time gap is getting narrower 

than before. 

The impact of feature types, classifiers, and data 

balancing techniques on software vulnerability prediction 

models are investigated by Kaya et al. [8], and they 

described that the performance of a vulnerability prediction 

model is affected by the three elements of adopted 

classification algorithm, adapted features, and data 

balancing approaches. Then, they demonstrated the effect 

of those factors on the performance of software 

vulnerability prediction models. They found that data 

balancing methods are effective for highly unbalanced 

datasets. The authors derived the conclusion that Random 
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Forest algorithm and RusboostTree provide the best 

performances in smaller and larger datasets, respectively. 

Further, there could be other factors which influence on 

the vulnerability discovery rate. Software evolution, 

popularity, size and age are the most important 

considerations among many reasons. Also, longer lines of 

code increase the probability of triggering software errors. 

Relationship between the number of defects and the size of 

code could be defined with the first order approximation 

which let us utilize the concept of defect density. For a 

security vulnerability, Alhazmi and Malaiya [9] defined a 

comparable measurement called vulnerability density. 

Meanwhile, some software vulnerability discovery 

models have been introduced when the datasets have 

become big enough to be investigated. Security 

vulnerabilities, which are falling into subclass of software 

defects, have their own certain characteristics from the non-

security threaten bugs. While non-security defects are 

relatively patient in time for their fixing, vulnerabilities 

require us to act as soon as possible due to the security 

concerns. As a result, a state transition rate in the software 

lifecycle for the security defect is different from the non-

security related bugs [10]. There are several S-shaped 

vulnerability discovery models using different statistic 

distributions. Joh and Malaiya [11] examined several S-

shaped vulnerability discovery models to investigate any 

connections between skewness in each model and model 

performances. The result shows that Gamma and Logistic 

distribution-based models perform better than other models 

with positively and negatively skewed datasets respectively. 

There are some studies debating about open-source 

versus proprietary software systems in various angles [12]. 

People prefer open-source solutions to proprietary 

counterparts when they need better security, free support, 

and ease of software development [13]. Also, adoption of 

open-source software is proliferating since it saves a lot of 

budges. However, others prefer proprietary products when 

they like to have a commercial support and stability. 

Boulanger [14] tried to answer which one is more secure 

and reliable in his paper, and he concluded that both are 

approximately equivalent in terms of reliability and security. 

Also, Sridhar et al. [15] showed that when it comes to the 

releasing patches for reported vulnerabilities, open-source 

software is marginally quicker than the proprietary systems.  

 

III. VULNERABILITY DISCOVERY 

TRENDS AND CVSS ANALYSIS 

 

3.1. Vulnerability Discovery Trends 
 

  From the early days of software era, there have been 

various software reliability growth models [16], and they 

were utilized for characterizing and detecting software 

defects in ordinary software defects. Those models can 

show the defect discovery patterns for a given systems in 

the past, and they also predict when the next bugs will be 

found in some degree, so that engineers could manage the 

optimal resource allocations related to patch management. 

Meanwhile, in the 1990s when many Internet services had 

been starting to burst out, security bugs became a 

considerable social concern. From the early 2000s, studies 

about software reliability growth models only for security 

related bugs have been introduced [17]. 

In this section, the vulnerability datasets from the three 

design software systems are applied into the Alhazmi-

Malaiya Logistic (AML) vulnerability discovery model [5] 

to observe the vulnerability discovery patterns in the 

systems. Although AML is originally proposed for the 

operating systems, the model performs very well with other 

types of software too [6]. Fig. 1(a) represents the AML 

model. The S-shaped logistic distribution model can 

represent the observation of the popularity given to a 

software system. In the figure, the dashed line is 

represented by Equation (1) which describes the 

vulnerability discovery rate whereas the solid S-shaped line 

defined by Equation (2) represents the cumulative number 

of vulnerabilities along with the timeline. 

 

 

𝜔(𝑡) = 𝐴𝛺(𝐵 − 𝛺), (1) 

 

𝛺(𝑡) =
𝐵

𝐵𝐶−𝐴𝐵𝑡 + 1
. (2) 

 

In Equation (1), the growing number of vulnerabilities is 

governed by the two components, A and B. The first factor 

A increases when time goes because of the rising share of 

software installations. The second factor B represents the 

number of remaining unknown vulnerabilities which 

decreases with the timeline. Equation (2) is derived from 

Equation (1) by the differential equation, and here Ω(t) 

indicates the number of cumulative vulnerabilities found at 

time t. The two parameters could be obtained empirically 

while parameter C is introduced from solving Equation (1). 

  In AML model, there are three phases of learning, linear 

and saturation as shown in Fig. 1(a). How to calculate for 

the two Transition Points and the Mid-point from the figure 

is mathematically well defined in [18]. After a software 

system created, vulnerability detection rate is going up 

because of the gaining market share. This period is called a 

learning phase. Then the linear phase comes where the 

discovery rate reaches to the height level. The last one is 

saturation phase where the vulnerability discovery rate goes 

down because of the losing popularity. 
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Fig. 1(b), 1(c) and 1(d) show the AML model fittings for 

the three systems. The x-axis is the calendar time while the 

y-axis represents the cumulative number of vulnerabilities. 

The dots and solid lines on the figures represent real data 

points and AML model fitting lines, respectively. Table 1 

shows the model fitting parameters from the three figures. 

The table also contains the two transition points (T1, T2) 

and the Mid-point (MP) with R2 values which tells us the 

Pearson product moment correlation coefficient for the 

model fittings. The Pearson correlation is considered as one 

of the most common method to use for numerical variables 

and its output is ranges between -1 to 1, where -1 is total 

negative correlation, 0 means no correlation, and 1 is total 

positive correlation. The R2 values higher than 0.7 indicate 

significant correlations between the real datasets and model 

generated lines [19].  

The transition points shown in Table 1 indicate that 

vulnerability discovery trends in Illustrator and GIMP are 

currently in the saturation phase. It signifies that the two 

software systems are in stable state based on the 

vulnerability discovery rate. Meanwhile, the Photoshop is 

currently in the linear phase, and its peak discovery rate 

appears in September 2021, according to the model fitting. 

However, we need to keep in mind that the AML model 

does not consider a software evolution explicitly which 

introduces new chunk of source codes into systems. As a 

result, the vulnerability discovery rate presented in the 

figures might be changed in the future as the software 

systems are updated. 

 

3.2. CVSS Analysis 
 

  The Common Vulnerability Scoring System (CVSS, 

https://www.first.org/cvss) is used as unifying and 

standardizing software vulnerabilities in various security 

bulletins in many fields in both academia and industries 

[20]. The scoring system has three metric groups of base, 

temporal, and environmental metrics. Scores in each metric 

group ranges from 0.0 (no risk) to 10.0 (critical). The base 

metric is required for the final CVSS score while the others 

are optional. The majority of the publicly available CVSS 

scores reflect the base metric information only. 

The base metric is based on the exploitability and impact 

sub-scores. The exploitability sub-score measures how 

vulnerable to exploitation for a given vulnerability, and it 

contains attributes of Access Vector (AV), Access 

Complexity (AC), the number of required Authentications 

(Au), etc. AV reflects how a vulnerability is abused in terms 

of Network (N), Adjacent network (A) or Local (L). AC 

  

(a) AML vulnerability discovery model. 

 

(b) Vulnerability discovery trend in Photoshop. 

 

  

(c) Vulnerability discovery trend in Illustrator. 
 

(d) Vulnerability discovery trend in GIMP. 

Fig. 1. AML vulnerability discovery model and the model fittings. 

 

Table 1. AML model fitting parameters from Fig. 1(b), 1(c), and 1(d) 

Tools A B C R2 T1 MP T2 

Photoshop 0.0000054 140 0.63 0.8569 2016-11-25 2021-09-02 2026-06-10 

Illustrator 0.0001242 14.8077 1.2641 0.9730 2008-06-28 2010-06-14 2012-05-30 

GIMP 0.0000607 28.9136 0.7078 0.9754 2009-12-24 2012-01-14 2014-02-02 
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measures how complex it is for an exploitation after 

attackers have gained access privileges to victim systems in 

terms of High (H), Medium (M) or Low (L). Au metric, 

which counts the number of times that an attacker needs to 

authenticate for a successful attack, has three values of 

Multiple (M), Single (S) and None (N). Meanwhile, the 

impact sub-scores measure how much a system is 

compromised by attackers, after a successful exploitation, 

with respect to the confidentiality(C), integrity(I), and 

availability(A). They all are measured in terms of Complete 

(C), Partial (P), or None(N). 

Table 2, 3 and 4 represent the number of incidents in the 

exploitability and the impact sub-scores from the CVSS 

base metric group. In the tables, the shaded cells indicate 

that they have the highest counts in each attribute. It is 

observed that the network access has the most incidents in 

AV while the other two values of adjacent network and 

Local access have few or none. For AC, there is no High 

incident for the two Adobe products and GIMP have only 

one case. The majority of the incidents are Medium or Low. 

It suggests that complicated systems have a lot less risks to 

be compromised. For Au metric, there is only None values 

available. This signifies that if the software systems have at 

least one authentication process, it should be a lot safer than 

no authentication at all. 

For the impact sub-scores, C appears the most in the two 

Adobe systems while P occupies most of the time in GIMP 

for all three categories of confidentiality, integrity and 

availability. This could be translated that when the systems 

are compromised, the open-source software has less impact 

from adverse events. It is possible that the Adobe systems 

share source codes, which means they share potential 

vulnerabilities too. It could be a future research work to 

uncover how sharing code effects on the vulnerability 

discovery trends in the systems. 

 

IV. PREDICTION CAPABILITIES OF AML 

 

  The goodness of fit tests, shown in the previous section, 

can provide the past vulnerability discovery trends. 

However, when the future trends are not consistent with 

models, then their performance should not be good enough 

for predictions. A key mission of vulnerability discovery 

models is estimating the number of vulnerabilities which 

might be encountered by a software user. This is the main 

issue when it comes to the estimating software stability 

after a particular period of test time. 

If a specific vulnerability discovery model has a better 

estimation power than others, it could predict the number 

of vulnerabilities more precisely using only the data 

currently available. That kind of prediction abilities are 

necessary to evaluate the resources required for risk 

estimation and maintenance in advance. In the software 

engineering field, some of reliability growth models had 

been examined for their prediction capabilities [21]. When 

we can predict the future trend accurately, it is possible to 

allocate the related resources optimally in a timely manner. 

The six figures from Fig. 2(a) to 2(f) show the prediction 

capabilities. In Fig. 2(a), 2(c) and 2(e), data points on the x-

axes represent calendar time while the y-axes show 

prediction errors in percent. In each figure, the x-axis 

ranges from the date when the first vulnerability reported to 

the date of 2020.06.10 when the vulnerability datasets were 

minded. Meanwhile in Fig. 2(b), 2(d) and 2(f), the x-axes 

represent the percentage-time covering the same periods 

with the previous corresponding figures of Fig. 2(a), 2(c) 

and 2(e) respectively. Also, the y-axes in Fig. 2(b), 2(d) and 

2(f) have the same significance with the previous figures. 

The prediction error PE can be calculated with Equation (3), 

where Ω is the number of actual number of vulnerabilities 

and Ωt is the estimated number of vulnerabilities by AML 

at time t. 
 

 

𝑃𝐸(𝑡) =
Ω𝑡 − Ω

Ω
. (3) 

 
 

At each time point t, the vulnerability discovery model is 

initiated, and elapsed from the start point to the end, the 

actual datasets are fitted by the regression analysis. Then, 

parameters from the generated AML model are applied to 

estimate the number of cumulative vulnerabilities. In the 

entire figures, at the beginning, the prediction errors 

Table 2. CVSS in Photoshop.  Table 3. CVSS in Illustrator.  Table 4. CVSS in GIMP. 

Exploitability sub-score  Exploitability sub-score  Exploitability sub-score 

AV AC Au  AV AC Au  AV AC Au 

A:0 H:0 M:0  A:0 H:0 M:0  A: 0 H: 1 M: 0 

L:3 M:34 S:0  L:1 M:5 S:0  L: 0 M: 24 S: 0 

N:63 L:32 N:66  N:13 L:9 N:14  N: 30 L: 5 N: 30 

Impact sub-score  Impact sub-score  Impact sub-score 

C I A  C I A  C I A 

C: 41 C: 41 C: 41  C:13 C:13 C:13  C: 5 C: 5 C: 5 

P: 25 P: 19 P: 19  P: 1 P: 1 P: 1  P: 23 P: 23 P: 24 

N: 0 N: 6 N: 6  N: 0 N: 0 N: 0  N: 2 N: 2 N: 1 
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fluctuate, then gradually converge to smaller error rates. 

That is because there are not enough datasets for the model 

regressions in the early prediction stages. 

To find out how the number of time points on the x-axis 

affects to the model fittings, we categorize the model 

predictions into two groups. The first group (group 1) is 

composed of Fig. 2(a), 2(c) and 2(e) while the second group 

(group 2) is composed of Fig. 2(b), 2(d) and 2(f). Data 

points in the first group are unequally distributed and the 

number of data points are relatively small sizes because, in 

those figures, prediction errors are only calculated on the 

vulnerability reporting dates. On the other hand, in the 

second group, the data points in the x-axis are daily basis, 

so that the data points are not only equally distributed but 

also big sizes. The figures in the second group cover the 

same time periods with the first group. 

Although it is true that the future projections are not 

meaningful when there are not enough datasets for 

regression analysis, a prediction result could be enhanced 

depending on different models, and perhaps even by using 

the same model, we might expect different results if we 

utilize the model differently. 

In this paper, we calculate the model prediction 

performances from the two groups. It took about five 

minutes to calculate the prediction errors in the first group 

for each software system whereas the calculations from the 

second group took more than half a day for each software 

system. The calculations were performed on the desktop 

computer one at a time with the CPU of Core i5-4690 @ 

3.50GHz, and main memory of 8.0 GB.  

Average error (AE) and average bias (AB) are evaluated 

as presented in Equation (4) and (5), to compare the 

prediction capabilities between the two groups more 

objectively. In the equations, Ω is the number of actual 

vulnerabilities while Ωt is the projected number of 

vulnerabilities at time t. n represents the total number of 

time points. AE measures how a model estimates an actual 

number precisely throughout the test phase while AB 

assesses model tendency of under or over estimations, and 

its values could be positive (over estimation) or negative 

(under estimation). They can be considered as normalized 

predictability measures [18]. 

 

 

𝐴𝐸(𝑡) = ∑ |
Ω𝑡 − Ω

Ω
|

𝑛

𝑡=1
, (4) 

 
  

 

𝐴𝐵(𝑡) =∑
Ω𝑡 − Ω

Ω

𝑛

𝑡=1
. (5) 

 

Fig. 3 shows the comparisons between the two groups in 

average error and average bias. A quick glance tells us that 

the values from the second group are smaller than their 

counterpart values for both measurements, which indicates 

that the estimations based on the daily predictions are more 

accurate than the estimations based on the unequally 

distributed datasets. Table 5 shows how much the 

predictions from the second group perform better than the 

first group. For all the predictions in both average error and 

bias, it clearly tells us that the second group outperforms to 

the first. 

 

  
(a) Prediction error (25 data points). (b) Prediction error (5477 data points). 

  
(c) Prediction error (11 data points). (d) Prediction error (5243 data points). 

  
(e) Prediction error (17 data points). (f) Prediction error (4791 data points). 

 

Fig. 2. Comparing Prediction Errors between Group1 (a, c, e) and Group2 (b, d, f). 
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V. CONCLUSION 

 

  In this paper, we quantitatively examine the security 

concerns in the three major graphical software systems, 

namely, Photoshop, Illustrator and GIMP. We practice the 

model fittings on the systems to examine if the vulnerability 

discovery processes on those systems are nicely represented 

by the AML model. Although the AML model was 

originally proposed for operating systems, it also can be 

applicable to the major design software tools too. 

According to the model fittings, we are carefully expecting 

that Illustrator and GIMP have entered their stable period 

while Photoshop is continually expecting new 

vulnerabilities for a while. 

Next, the type of vulnerabilities in the systems were 

analyzed based on the CVSS. Here, we found that even a 

single authentication process could prevent a lot of 

penetrations. After a security bridge is compromised, the 

two Adobe systems bring more damages than the open-

source software system according to the impact sub-scores 

examined. Previously, similar research about the CVSS 

analysis was performed by other researchers [20]. 

Finally, we conducted prediction capabilities with two 

different approaches. For the first method, estimations were 

only calculated on the dates only when a new vulnerability 

was reported while in the second method, predictions were 

made daily from the beginning to the end. Although the two 

groups have the same information of the entire and actual 

vulnerability discovery dates, for the model prediction, the 

second method performs better than the first one. 

The insight from this paper can be used by software 

development managers to allocate software developers 

optimally for security patches. We could also expect that 

normal graphical software users start to be aware of security 

risk, related to their digital work environments. 
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