
Journal of Multimedia Information System VOL. 8, NO. 4, December 2021 (pp. 259-266): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2021.8.4.259

259

I. INTRODUCTION

Software tools can assist designers to express their

creative ideas effectively and productively in a digital

manner. Software systems such as Adobe Photoshop is

extremely popular so that most of graphic designers in

related industries consider it as one of the virtues they must

handle with. Those industries are usually contents driven

industries, such as visual, industrial and fashion designs.

Meanwhile, a software vulnerability is a weak point in

the structure which could be exploited by malicious system

users causing loss or harm [1]. A publicly known software

vulnerability which is not patched represents security risk

and the potential risk might cause significant damages in

both financially and reputably to the related parties. Also,

vulnerabilities unknown to the public sometimes are traded

for bad purposes [2]. Those software vulnerabilities are

frequently created as a result of coding mistakes by

software developers. After its creation, a software

vulnerability could be discovered by any kinds of software

tests, or if it’s lucky, it might not be discovered forever.

If it is discovered by benevolent users, then the

vulnerability will be reported to the corresponding software

vendor, and we will expect a proper patch. Typically, it

takes about a month or so for developing a patch from the

time when a vulnerability is reported [3]. However, if

malicious users find the security bugs, there could be high

probabilities that the vulnerabilities will be exploited for

their own benefits, mostly economic gains.

The vulnerability discovery rate could be roughly

projected by vulnerability discovery models (VDM) for a

given software system if it has enough datasets [4].

Malicious users also could secretly release the vulnerability

information to black hat communities which will lead to

proliferous exploitations. If a flawless patch is available,

then the vulnerability is no more considered as a threat. Of

course, users must apply the patch into their system, not to

be a victim. However, sometimes a security patch itself

introduces a new vulnerability.

Empirical Risk Assessment in Major Graphical Design Software

Systems

HyunChul Joh1,JooYoung Lee2*

Abstract

Security vulnerabilities have been reported in major design software systems such as Adobe Photoshop and Illustrator, which are

recognized as de facto standard design tools in most of the design industries. Companies need to evaluate and manage their risk levels posed

by those vulnerabilities, so that they could mitigate the potential security bridges in advance. In general, security vulnerabilities are discovered

throughout their life cycles repeatedly if software systems are continually used. Hence, in this study, we empirically analyze risk levels for

the three major graphical design software systems, namely Photoshop, Illustrator and GIMP with respect to a software vulnerability discovery

model. The analysis reveals that the Alhazmi-Malaiya Logistic model tends to describe the vulnerability discovery patterns significantly. This

indicates that the vulnerability discovery model makes it possible to predict vulnerability discovery in advance for the software systems. Also,

we found that none of the examined vulnerabilities requires even a single authentication step for successful attacks, which suggests that

adding an authentication process in software systems dramatically reduce the probability of exploitations. The analysis also discloses that,

for all the three software systems, the predictions with evenly distributed and daily based datasets perform better than the estimations with

the datasets of vulnerability reporting dates only. The observed outcome from the analysis allows software development managers to prepare

proactively for a hostile environment by deploying necessary resources before the expected time of vulnerability discovery. In addition, it

can periodically remind designers who use the software systems to be aware of security risk, related to their digital work environments.

Key Words: Software Security, Vulnerability Discovery Model, Adobe Photoshop, Illustrator, GIMP.

Manuscript received November 05, 2021; Revised December 08, 2021; Accepted December 14, 2019. (ID No. JMIS-21M-11-038)

Corresponding Author (*): JooYoung Lee, School of Interdisciplinary Studies (Fashion Design Major), Kyungil University, Gyeongsan

city, 38428 Korea, +82-53-600-5844, jjoolee@kiu.kr
1School of Computer Science, Kyungil University, Gyeongsan city, 38428 Korea, joh@kiu.kr
2School of Interdisciplinary Studies (Fashion Design Major), Kyungil University, Gyeongsan city, 38428 Korea, jjoolee@kiu.kr

mailto:joh@kiu.kr
mailto:jjoolee@kiu.kr

Empirical Risk Assessment in Major Graphical Design Software Systems

260

Despite the high reputations of Adobe Photoshop, every

now and then, vulnerabilities have been reported in its

system. Those vulnerabilities are dangerous, and

sometimes even fatal, since they provide privileges

controlling the designers’ computer systems to hackers.

Those privileges could lead to leakages of unrevealed

precious design outputs or sensitive personal information.

As a result, considerable fears of very possible cyber-

attacks are subjects to security researchers’ and related

industrial workers’ attentions.

Overall security risk should stay under certain acceptable

degrees in order not to be a target for a possible cyber-attack.

To manage their security risk under control, system

administrators need to somehow figure that out how much

their organizations put up with potential risks. That is

because if we want to improve our circumstances, somehow,

we should be able to measure the problem in specific

numbers.

In this paper, we are examining the three major graphical

design software systems, namely Adobe Photoshop,

Illustrator, and GIMP (GNU Image Manipulation Program)

from a software security point of view in a quantitative

manner. Photoshop and Illustrator are initially presented by

Adobe in 1987 and 1990, respectively, while GIMP project,

which is free and open-source software, was initially started

as a school semester project at the University of California,

Berkeley, and it was publicly available in 1996. Because it

is free and open-source software, GIMP has been instantly

adopted and pulled many kinds of contributors from

software developers to design artists. The two Adobe

systems can be installed on Windows and macOS, while

GIMP has more options when it comes to its host operating

systems. All three of them significantly have been

expanded since their first releases.

Even though there have been numerous studies related to

the software vulnerabilities, graphical software tools have

not been one of those subjects of discussions so far.

Moreover, most of the research related to the software

vulnerabilities has been performed in a qualitative approach,

and they have focused on detecting or preventing a specific

vulnerability. Since entering the 2000s, security researchers

started to examine major software products, such as

operating systems, Web browsers and servers in a

quantitative manner [5, 6]. That is because, in the early days

of the software era, there were not enough vulnerability

datasets, so it is hard to study in a quantitative manner. Here,

the software vulnerability datasets for the three systems

were extracted in June 2020 from the cvedetail.com.

In this paper, we have tried to answer the three questions

following. First, whether the AML vulnerability discovery

model, which was originally proposed for an operating

system, can be utilized for the major graphical design tools

or not. Second, how to reduce successful attacks by using

the information from vulnerabilities. And third, what kind

of dataset should be used for the best performance of the

vulnerability discovery predictions.

The analysis here provides answers for the three

questions above. First, we reveal that the AML model can

describe the vulnerability discovery patterns for the

graphical software systems. Second, adding an

authentication process in software systems dramatically

reduce the probability of exploitations. And third,

predictions with evenly distributed and daily based datasets

perform better than estimations with the datasets of

vulnerability reporting dates only.

The remainder of the paper is organized as follows. In

Section 2, some of the related studies are presented. In

Section 3, vulnerability discovery processes are examined.

Also, in the section, vulnerability analysis with the respect

to the Common Vulnerability Scoring System is given. In

Section 4, the prediction capabilities of the AML

vulnerability discovery model will be investigated. Finally,

Section 5 concludes this paper.

II. RELATED WORKS

 An Internet security company, Qualys, once released a

software vulnerability related paper based on empirical

studies [7]. In the report, they identified the “Laws of

Vulnerabilities” of four distinct and quantifiable attributes:

half-life, prevalence, persistence, and exploitation. The

half-life reveals a time period for reducing incidence of a

vulnerability by half, and the study found that average

duration of a half-life is approximately a month long,

differing by industry. The prevalence measures the turnover

rate of vulnerabilities in the topmost prevalent 20 security

bugs. The persistence attribute measures the entire life span

of vulnerabilities, and it apparently continues technically

unlimited. Finally, the last attribute of exploitation shows

time interval between an exploit announcement and the first

attack. They found that the time gap is getting narrower

than before.

The impact of feature types, classifiers, and data

balancing techniques on software vulnerability prediction

models are investigated by Kaya et al. [8], and they

described that the performance of a vulnerability prediction

model is affected by the three elements of adopted

classification algorithm, adapted features, and data

balancing approaches. Then, they demonstrated the effect

of those factors on the performance of software

vulnerability prediction models. They found that data

balancing methods are effective for highly unbalanced

datasets. The authors derived the conclusion that Random

Journal of Multimedia Information System VOL. 8, NO. 4, December 2021 (pp. 259-266): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2021.8.4.259

261

Forest algorithm and RusboostTree provide the best

performances in smaller and larger datasets, respectively.

Further, there could be other factors which influence on

the vulnerability discovery rate. Software evolution,

popularity, size and age are the most important

considerations among many reasons. Also, longer lines of

code increase the probability of triggering software errors.

Relationship between the number of defects and the size of

code could be defined with the first order approximation

which let us utilize the concept of defect density. For a

security vulnerability, Alhazmi and Malaiya [9] defined a

comparable measurement called vulnerability density.

Meanwhile, some software vulnerability discovery

models have been introduced when the datasets have

become big enough to be investigated. Security

vulnerabilities, which are falling into subclass of software

defects, have their own certain characteristics from the non-

security threaten bugs. While non-security defects are

relatively patient in time for their fixing, vulnerabilities

require us to act as soon as possible due to the security

concerns. As a result, a state transition rate in the software

lifecycle for the security defect is different from the non-

security related bugs [10]. There are several S-shaped

vulnerability discovery models using different statistic

distributions. Joh and Malaiya [11] examined several S-

shaped vulnerability discovery models to investigate any

connections between skewness in each model and model

performances. The result shows that Gamma and Logistic

distribution-based models perform better than other models

with positively and negatively skewed datasets respectively.

There are some studies debating about open-source

versus proprietary software systems in various angles [12].

People prefer open-source solutions to proprietary

counterparts when they need better security, free support,

and ease of software development [13]. Also, adoption of

open-source software is proliferating since it saves a lot of

budges. However, others prefer proprietary products when

they like to have a commercial support and stability.

Boulanger [14] tried to answer which one is more secure

and reliable in his paper, and he concluded that both are

approximately equivalent in terms of reliability and security.

Also, Sridhar et al. [15] showed that when it comes to the

releasing patches for reported vulnerabilities, open-source

software is marginally quicker than the proprietary systems.

III. VULNERABILITY DISCOVERY

TRENDS AND CVSS ANALYSIS

3.1. Vulnerability Discovery Trends

 From the early days of software era, there have been

various software reliability growth models [16], and they

were utilized for characterizing and detecting software

defects in ordinary software defects. Those models can

show the defect discovery patterns for a given systems in

the past, and they also predict when the next bugs will be

found in some degree, so that engineers could manage the

optimal resource allocations related to patch management.

Meanwhile, in the 1990s when many Internet services had

been starting to burst out, security bugs became a

considerable social concern. From the early 2000s, studies

about software reliability growth models only for security

related bugs have been introduced [17].

In this section, the vulnerability datasets from the three

design software systems are applied into the Alhazmi-

Malaiya Logistic (AML) vulnerability discovery model [5]

to observe the vulnerability discovery patterns in the

systems. Although AML is originally proposed for the

operating systems, the model performs very well with other

types of software too [6]. Fig. 1(a) represents the AML

model. The S-shaped logistic distribution model can

represent the observation of the popularity given to a

software system. In the figure, the dashed line is

represented by Equation (1) which describes the

vulnerability discovery rate whereas the solid S-shaped line

defined by Equation (2) represents the cumulative number

of vulnerabilities along with the timeline.

𝜔(𝑡) = 𝐴𝛺(𝐵 − 𝛺), (1)

𝛺(𝑡) =
𝐵

𝐵𝐶−𝐴𝐵𝑡 + 1
. (2)

In Equation (1), the growing number of vulnerabilities is

governed by the two components, A and B. The first factor

A increases when time goes because of the rising share of

software installations. The second factor B represents the

number of remaining unknown vulnerabilities which

decreases with the timeline. Equation (2) is derived from

Equation (1) by the differential equation, and here Ω(t)

indicates the number of cumulative vulnerabilities found at

time t. The two parameters could be obtained empirically

while parameter C is introduced from solving Equation (1).

 In AML model, there are three phases of learning, linear

and saturation as shown in Fig. 1(a). How to calculate for

the two Transition Points and the Mid-point from the figure

is mathematically well defined in [18]. After a software

system created, vulnerability detection rate is going up

because of the gaining market share. This period is called a

learning phase. Then the linear phase comes where the

discovery rate reaches to the height level. The last one is

saturation phase where the vulnerability discovery rate goes

down because of the losing popularity.

Empirical Risk Assessment in Major Graphical Design Software Systems

262

Fig. 1(b), 1(c) and 1(d) show the AML model fittings for

the three systems. The x-axis is the calendar time while the

y-axis represents the cumulative number of vulnerabilities.

The dots and solid lines on the figures represent real data

points and AML model fitting lines, respectively. Table 1

shows the model fitting parameters from the three figures.

The table also contains the two transition points (T1, T2)

and the Mid-point (MP) with R2 values which tells us the

Pearson product moment correlation coefficient for the

model fittings. The Pearson correlation is considered as one

of the most common method to use for numerical variables

and its output is ranges between -1 to 1, where -1 is total

negative correlation, 0 means no correlation, and 1 is total

positive correlation. The R2 values higher than 0.7 indicate

significant correlations between the real datasets and model

generated lines [19].

The transition points shown in Table 1 indicate that

vulnerability discovery trends in Illustrator and GIMP are

currently in the saturation phase. It signifies that the two

software systems are in stable state based on the

vulnerability discovery rate. Meanwhile, the Photoshop is

currently in the linear phase, and its peak discovery rate

appears in September 2021, according to the model fitting.

However, we need to keep in mind that the AML model

does not consider a software evolution explicitly which

introduces new chunk of source codes into systems. As a

result, the vulnerability discovery rate presented in the

figures might be changed in the future as the software

systems are updated.

3.2. CVSS Analysis

 The Common Vulnerability Scoring System (CVSS,

https://www.first.org/cvss) is used as unifying and

standardizing software vulnerabilities in various security

bulletins in many fields in both academia and industries

[20]. The scoring system has three metric groups of base,

temporal, and environmental metrics. Scores in each metric

group ranges from 0.0 (no risk) to 10.0 (critical). The base

metric is required for the final CVSS score while the others

are optional. The majority of the publicly available CVSS

scores reflect the base metric information only.

The base metric is based on the exploitability and impact

sub-scores. The exploitability sub-score measures how

vulnerable to exploitation for a given vulnerability, and it

contains attributes of Access Vector (AV), Access

Complexity (AC), the number of required Authentications

(Au), etc. AV reflects how a vulnerability is abused in terms

of Network (N), Adjacent network (A) or Local (L). AC

(a) AML vulnerability discovery model.

(b) Vulnerability discovery trend in Photoshop.

(c) Vulnerability discovery trend in Illustrator.

(d) Vulnerability discovery trend in GIMP.

Fig. 1. AML vulnerability discovery model and the model fittings.

Table 1. AML model fitting parameters from Fig. 1(b), 1(c), and 1(d)

Tools A B C R2 T1 MP T2

Photoshop 0.0000054 140 0.63 0.8569 2016-11-25 2021-09-02 2026-06-10

Illustrator 0.0001242 14.8077 1.2641 0.9730 2008-06-28 2010-06-14 2012-05-30

GIMP 0.0000607 28.9136 0.7078 0.9754 2009-12-24 2012-01-14 2014-02-02

Journal of Multimedia Information System VOL. 8, NO. 4, December 2021 (pp. 259-266): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2021.8.4.259

263

measures how complex it is for an exploitation after

attackers have gained access privileges to victim systems in

terms of High (H), Medium (M) or Low (L). Au metric,

which counts the number of times that an attacker needs to

authenticate for a successful attack, has three values of

Multiple (M), Single (S) and None (N). Meanwhile, the

impact sub-scores measure how much a system is

compromised by attackers, after a successful exploitation,

with respect to the confidentiality(C), integrity(I), and

availability(A). They all are measured in terms of Complete

(C), Partial (P), or None(N).

Table 2, 3 and 4 represent the number of incidents in the

exploitability and the impact sub-scores from the CVSS

base metric group. In the tables, the shaded cells indicate

that they have the highest counts in each attribute. It is

observed that the network access has the most incidents in

AV while the other two values of adjacent network and

Local access have few or none. For AC, there is no High

incident for the two Adobe products and GIMP have only

one case. The majority of the incidents are Medium or Low.

It suggests that complicated systems have a lot less risks to

be compromised. For Au metric, there is only None values

available. This signifies that if the software systems have at

least one authentication process, it should be a lot safer than

no authentication at all.

For the impact sub-scores, C appears the most in the two

Adobe systems while P occupies most of the time in GIMP

for all three categories of confidentiality, integrity and

availability. This could be translated that when the systems

are compromised, the open-source software has less impact

from adverse events. It is possible that the Adobe systems

share source codes, which means they share potential

vulnerabilities too. It could be a future research work to

uncover how sharing code effects on the vulnerability

discovery trends in the systems.

IV. PREDICTION CAPABILITIES OF AML

 The goodness of fit tests, shown in the previous section,

can provide the past vulnerability discovery trends.

However, when the future trends are not consistent with

models, then their performance should not be good enough

for predictions. A key mission of vulnerability discovery

models is estimating the number of vulnerabilities which

might be encountered by a software user. This is the main

issue when it comes to the estimating software stability

after a particular period of test time.

If a specific vulnerability discovery model has a better

estimation power than others, it could predict the number

of vulnerabilities more precisely using only the data

currently available. That kind of prediction abilities are

necessary to evaluate the resources required for risk

estimation and maintenance in advance. In the software

engineering field, some of reliability growth models had

been examined for their prediction capabilities [21]. When

we can predict the future trend accurately, it is possible to

allocate the related resources optimally in a timely manner.

The six figures from Fig. 2(a) to 2(f) show the prediction

capabilities. In Fig. 2(a), 2(c) and 2(e), data points on the x-

axes represent calendar time while the y-axes show

prediction errors in percent. In each figure, the x-axis

ranges from the date when the first vulnerability reported to

the date of 2020.06.10 when the vulnerability datasets were

minded. Meanwhile in Fig. 2(b), 2(d) and 2(f), the x-axes

represent the percentage-time covering the same periods

with the previous corresponding figures of Fig. 2(a), 2(c)

and 2(e) respectively. Also, the y-axes in Fig. 2(b), 2(d) and

2(f) have the same significance with the previous figures.

The prediction error PE can be calculated with Equation (3),

where Ω is the number of actual number of vulnerabilities

and Ωt is the estimated number of vulnerabilities by AML

at time t.

𝑃𝐸(𝑡) =
Ω𝑡 − Ω

Ω
. (3)

At each time point t, the vulnerability discovery model is

initiated, and elapsed from the start point to the end, the

actual datasets are fitted by the regression analysis. Then,

parameters from the generated AML model are applied to

estimate the number of cumulative vulnerabilities. In the

entire figures, at the beginning, the prediction errors

Table 2. CVSS in Photoshop. Table 3. CVSS in Illustrator. Table 4. CVSS in GIMP.

Exploitability sub-score Exploitability sub-score Exploitability sub-score

AV AC Au AV AC Au AV AC Au

A:0 H:0 M:0 A:0 H:0 M:0 A: 0 H: 1 M: 0

L:3 M:34 S:0 L:1 M:5 S:0 L: 0 M: 24 S: 0

N:63 L:32 N:66 N:13 L:9 N:14 N: 30 L: 5 N: 30

Impact sub-score Impact sub-score Impact sub-score

C I A C I A C I A

C: 41 C: 41 C: 41 C:13 C:13 C:13 C: 5 C: 5 C: 5

P: 25 P: 19 P: 19 P: 1 P: 1 P: 1 P: 23 P: 23 P: 24

N: 0 N: 6 N: 6 N: 0 N: 0 N: 0 N: 2 N: 2 N: 1

Empirical Risk Assessment in Major Graphical Design Software Systems

264

fluctuate, then gradually converge to smaller error rates.

That is because there are not enough datasets for the model

regressions in the early prediction stages.

To find out how the number of time points on the x-axis

affects to the model fittings, we categorize the model

predictions into two groups. The first group (group 1) is

composed of Fig. 2(a), 2(c) and 2(e) while the second group

(group 2) is composed of Fig. 2(b), 2(d) and 2(f). Data

points in the first group are unequally distributed and the

number of data points are relatively small sizes because, in

those figures, prediction errors are only calculated on the

vulnerability reporting dates. On the other hand, in the

second group, the data points in the x-axis are daily basis,

so that the data points are not only equally distributed but

also big sizes. The figures in the second group cover the

same time periods with the first group.

Although it is true that the future projections are not

meaningful when there are not enough datasets for

regression analysis, a prediction result could be enhanced

depending on different models, and perhaps even by using

the same model, we might expect different results if we

utilize the model differently.

In this paper, we calculate the model prediction

performances from the two groups. It took about five

minutes to calculate the prediction errors in the first group

for each software system whereas the calculations from the

second group took more than half a day for each software

system. The calculations were performed on the desktop

computer one at a time with the CPU of Core i5-4690 @

3.50GHz, and main memory of 8.0 GB.

Average error (AE) and average bias (AB) are evaluated

as presented in Equation (4) and (5), to compare the

prediction capabilities between the two groups more

objectively. In the equations, Ω is the number of actual

vulnerabilities while Ωt is the projected number of

vulnerabilities at time t. n represents the total number of

time points. AE measures how a model estimates an actual

number precisely throughout the test phase while AB

assesses model tendency of under or over estimations, and

its values could be positive (over estimation) or negative

(under estimation). They can be considered as normalized

predictability measures [18].

𝐴𝐸(𝑡) = ∑ |
Ω𝑡 − Ω

Ω
|

𝑛

𝑡=1
, (4)

𝐴𝐵(𝑡) =∑
Ω𝑡 − Ω

Ω

𝑛

𝑡=1
. (5)

Fig. 3 shows the comparisons between the two groups in

average error and average bias. A quick glance tells us that

the values from the second group are smaller than their

counterpart values for both measurements, which indicates

that the estimations based on the daily predictions are more

accurate than the estimations based on the unequally

distributed datasets. Table 5 shows how much the

predictions from the second group perform better than the

first group. For all the predictions in both average error and

bias, it clearly tells us that the second group outperforms to

the first.

(a) Prediction error (25 data points). (b) Prediction error (5477 data points).

(c) Prediction error (11 data points). (d) Prediction error (5243 data points).

(e) Prediction error (17 data points). (f) Prediction error (4791 data points).

Fig. 2. Comparing Prediction Errors between Group1 (a, c, e) and Group2 (b, d, f).

Journal of Multimedia Information System VOL. 8, NO. 4, December 2021 (pp. 259-266): ISSN 2383-7632 (Online)

http://doi.org/10.33851/JMIS.2021.8.4.259

265

V. CONCLUSION

 In this paper, we quantitatively examine the security

concerns in the three major graphical software systems,

namely, Photoshop, Illustrator and GIMP. We practice the

model fittings on the systems to examine if the vulnerability

discovery processes on those systems are nicely represented

by the AML model. Although the AML model was

originally proposed for operating systems, it also can be

applicable to the major design software tools too.

According to the model fittings, we are carefully expecting

that Illustrator and GIMP have entered their stable period

while Photoshop is continually expecting new

vulnerabilities for a while.

Next, the type of vulnerabilities in the systems were

analyzed based on the CVSS. Here, we found that even a

single authentication process could prevent a lot of

penetrations. After a security bridge is compromised, the

two Adobe systems bring more damages than the open-

source software system according to the impact sub-scores

examined. Previously, similar research about the CVSS

analysis was performed by other researchers [20].

Finally, we conducted prediction capabilities with two

different approaches. For the first method, estimations were

only calculated on the dates only when a new vulnerability

was reported while in the second method, predictions were

made daily from the beginning to the end. Although the two

groups have the same information of the entire and actual

vulnerability discovery dates, for the model prediction, the

second method performs better than the first one.

The insight from this paper can be used by software

development managers to allocate software developers

optimally for security patches. We could also expect that

normal graphical software users start to be aware of security

risk, related to their digital work environments.

Acknowledgement
This research was supported by the intramural research

program in Kyungil University.

REFERENCES

[1] C.P. Pfleeger and S. L. Pfleeger, Security in Computing,

3rd ed., Prentice Hall PTR, 2003.

[2] L. Allodi, “Economic Factors of Vulnerability Trade

and Exploitation,” in Proceedings of the 2017 ACM

SIGSAC Conference on Computer and

Communications Security, TX, USA, pp. 1483-1499,

2017.

[3] K. Scarfone and P. Mell, “An Analysis of CVSS

Version 2 Vulnerability Scoring,” in Proceedings of the

2009 International Symposium on Empirical Software

Engineering and Measurement, pp. 516-525, 2009.

[4] F.K. Wai, L.W. Yong, D.M. Divakaran, and V.L.L.

Thing, “Predicting vulnerability discovery rate using

past versions of a software,” in Proceedings of the 2018

IEEE International Conference on Service Operations

and Logistics, and Informatics, pp. 220-225, 2018.

[5] O.H. Alhazmi and Y.K. Malaiya, “Application of

Vulnerability Discovery Models to Major Operating

Systems,” IEEE Transactions on Reliability, vol. 57, no.

1, pp. 14-22, 2008.

[6] H. Joh, “Assessing Web Browser Security

Vulnerabilities with respect to CVSS,” Journal of Korea

Multimedia Society, vol. 18, no. 2, pp. 199-206, 2015.

[7] Qualys Inc., “The Laws of Vulnerabilities 2.0” in Black

hat 2009, 28 July 2009; https://www.qualys.com/docs/

laws-of-vulnerabilities-2.0.pdf

[8] A. Kaya, A.S. Keceli, C. Catal, and B. Tekinerdogan,

“The impact of feature types, classifiers, and data

balancing techniques on software vulnerability

prediction models,” Journal of Software Evolution and

Process, vol. 31, no. 9, 2019.

[9] O.H. Alhazmi, Y.K. Malaiya, and I. Ray, “Security

Vulnerabilities in Software Systems: A Quantitative

Perspective,” in Proceedings of the Working

Conference on Data and Information Security, pp. 281-

294, 2005.

[10] H. Okamura, M. Tokuzane, and T. Dohi, “Quantitative

Security Evaluation for Software System from

Vulnerability Database,” Journal of Software

Fig. 3. Average Error and Average Bias.

Table 5. Relative Error Ratios.

 Photoshop Illustrator GIMP

AE2/AE1 0.7309 0.7173 0.5094

AB2/AB1 0.0756 0.6268 0.1000

 AE1: AE from group1, AE2: AE from group2
 AB1: AB from group1, AB2: AB from group2

0.1050

0.4686

-0.1036

0.3509

-0.3616

0.3662

0.0079

0.3425

-0.0649

0.2517

-0.0362

0.1865

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

AB AE AB AE AB AE

Photoshop Illustrator GIMP

AB, AE

First Group Second Group

Empirical Risk Assessment in Major Graphical Design Software Systems

266

Engineering and Applications, vol. 6, no. 4A, pp. 15-23,

2013.

[11] H. Joh and Y. K. Malaiya, “Modeling Skewness in

Vulnerability Discovery,” Quality and Reliability

Engineering International, vol. 30, no. 8, pp. 1445-

1459, 2014.

[12] A. Singh, R. K. Bansal, and N. Jha, “Open Source

Software vs Proprietary Software,” International

Journal of Computer Applications, vol. 114 no. 18, pp.

26-31, 2015.

[13] S. Dhir and S. Dhir, “Adoption of open-source soft-

ware versus proprietary software: An exploratory study,”

Strategic Change, vol. 26, no. 4, pp. 363–371, 2017.

[14] A. Boulanger, “Open-source versus proprietary

software: Is one more reliable and secure than the

other?,” IBM Systems Journal, vol. 44, no. 2, pp. 239-

248, 2005.

[15] S. Sridhar, K. Altinkemer, and J. Rees, “Software

Vulnerabilities: Open Source versus Proprietary

Software Security,” in Preceedings of Americas

Conference on Information Systems, Omaha, Nebraska,

USA, Aug. 2005.

[16] N. Ullah, M. Morisio, and A. Vetro, “A Comparative

Analysis of Software Reliability Growth Models using

Defects Data of Closed and Open Source Software,” in

Proceedings of the 35th Annual IEEE Software

Engineering Workshop, Greece, pp. 187-192, Oct. 2012.

[17] H.K. Browne, W. A. Arbaugh, J. McHugh, and W.L.

Fithen, “A trend analysis of exploitation’, in

Proceedings of IEEE Symposium on Security and

Privacy, pp. 214–229, May 2001.

[18] O. H. Alhazmi and Y. K. Malaiya, “Prediction

capabilities of vulnerability discovery models,” in

Proceedings of annual reliability and maintainability

symposium, pp. 86–91, 2006.

[19] D. Nettleton, Commercial Data Mining, Chapter 6 -

Selection of Variables and Factor Derivation, M.

Kaufmann and et al. (Eds.), Boston, pp. 79-104, 2014.

[20] S. H. Houmb, V. N. Franqueira, and E. A. Engum,

“Quantifying Security Risk Level from CVSS

Estimates of Frequency and Impact,” Journal of

Systems and Software, vol. 83, no. 9, pp. 1622-1634,

2010.

[21] Y. K. Malaiya, N. Karunanithi, and P. Verma,

“Predicta-bility of software reliability models,” IEEE

Transa-ctions on Reliability, vol. 41, no. 4, pp. 539-546,

1992.

Authors

HyunChul Joh is an associate professor

at the School of Computer Science in

Kyungil University, Korea, since March

2014. He was serving as an executive

director at computing information center

in Kyungil university from 2018 to 2020.

From 2012 to 2014, he was a GIST

college laboratory instructor in division

of liberal arts and sciences at Gwangju

Institute of Science and Technology

(GIST) in Korea. His research focuses on modeling the discovery

process for software security vulnerabilities and risk metrics.

Recently he had started research on AI and big data analysis. He

received his Ph. D. and M. S. in computer science from Colorado

State University, CO USA, in 2011 and 2007, respectively. He also

received a B. E. in information and communications engineering

from Hankuk University of Foreign Studies in Korea, 2005.

JooYoung Lee is an associate

professor at the School of

Interdisciplinary Studies in Kyungil

University, Korea, since March 2012.

From 2010 to 2011, she was a part-time

instructor in Department of Fashion

Design at Chung-Ang University in

Korea. Her research focuses on fashion

design and technology. Recently she had

started research on wearable computing

of fashion design. She completed her doctoral course works at

department of clothing in Chung-Ang University, Korea. She

received her B. A. and M. A. in Fashion Design and Technology

from University of Arts London (LCF) UK, in 2004 and 2009

respectively.

