• Title/Summary/Keyword: Vulcanization process

Search Result 26, Processing Time 0.019 seconds

A Study on the Vulcanization System and Two-Step Foaming Properties for Natural Rubber Foam (천연고무의 가황시스템 및 성형공정에 따른 2단 발포 특성 연구)

  • Sunhee Lee;Ye-Eun Park;Dikshita Chowdhury
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.246-255
    • /
    • 2023
  • In this study, we investigated for natural rubber foam to replace petrochemical-based neoprene foam. Experiments were conducted on vulcanization system and 2-step foaming process of natural rubber. The vulcanization system were EV(Efficient Vulcanization Cure), Semi-EV(Semi-Efficient Vulcanization Cure) and CV(Conventional Vulcanization Cure). In the 2-step foaming process, first molding temperature was 140℃, times were 15, 20, 25, and 30minutes, and the second molding temperature was 160℃, the times 5, 10, 15, and 20minutes. The cure and viscosity characterization were evaluated by oscillating disc rheometer (ODR) and mooney viscosmeter. Various mechanical characteristics, including hardness, tensile strength, elongation at the point of rupture, and tear strength, were quantified. Subsequently, an assessment of alterations in these mechanical attributes was conducted post-immersion in a NaCl solution. In addition degree of volume change was measured after immersing the NR foam in NaCl solution and the low-temperature permanent compression set was evaluated at 4℃. And expansion ratio and shrinkage ratio of NR foam were evaluated for 28 days. As a result the EV vulcanization system showed the least change in physical properties before and after salt water immersion, and the lowest shrinkage ratio for 28 days. In addition it was confirmed that the 2-step foaming optimum condition differed depending on the appropriate vulcanization condition.

A Study on Vulcanization of EPDM by Far-infrared (원적외선에 의한 EPDM의 가교 특성 연구)

  • Bae, J.W.;Kim, J.S.;Lee, J.H.;Jung, W.S.;Park, H.C.;Kang, D.P.
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Far-infrared vulcanization of ethylene-propylene-diene terpolymer(EPDM) compounds has been studied in comparison with hot air vulcanization. Vulcanization characteristics of EPDM compounds were measured by degree of curing and temperature of specimens in vulcanization process. As a result, degree of curing by far-infrared of EPDM compounds was shown to be higher value than that by hot air at the same vulcanization temperature. Especially, degree of curing by far-infrared on 3 mm thickness of EPDM compounds was increased by two times compared to that by hot air. While the increase of thermal conductivity of EPDM compounds highly improved degree of curing by far-infrared, that hardly improved degree of curing by hot air.

Kinetic Measurements on Elastomer by Differential Scanning Calorimetry (Differential Scanning Calorimetry에 의(依)한 탄성체(彈性體)의 속도론적(速度論的) 연구(硏究))

  • Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.22 no.4
    • /
    • pp.333-339
    • /
    • 1987
  • A modern kinetic evaluation method for nonisothermal reactions measured with Differential Scanning Calorimetry(DSC) is presented. It is based on multiple linear regression analysis using a number of curve points in a selectable range of conversion. The obtained kinetic data are the basis to compute a reaction process under any condition e.g. isothermal or adiabatic. The DSC measurements was performed on a Mettler TA3000 SYSTEM with the built in evaluation software. Mainly the following reactions are discussed: vulcanization of natural rubber compounds containing vulcanizing accelerators. The purpose of this work is to analyse the vulcanization kinetics of typical NR vulcanization systems using DSC. These systems were chosen because they are typically reactive elastomer and are commercially important.

  • PDF

Frequency Dependency of Electrical Property Stabilization during Vulcanization of Modified NR/IR Blends (개질된 NR/IR 블랜드의 가황 반응에서 나타나는 전기적 특성 안정화의 주파수 의존성)

  • Ahn, Won-Sool
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.179-185
    • /
    • 2004
  • Frequency dependency or electrical property stabilization during vulcanization of modified NR/IR composite materials was studied using in-situ electrical property measuring technique. Volume resistivity(p) before and after vulcanization reaction of the sample was measured as the function or frequency in the range or 1Hz to 10kHz at reaction temperatures of 130, 140, 150, and $160^{\circ}C$, respectively. A double stabilization mode of frequency dependency was observed, in which a slow stabilization process of p to a value of ca. $1.0{\times}10^7\;{\Omega}-cm$ occurred after a drastic initial decrease from ca. $9.0{\times}10^7\;{\Omega}-cm$. In addition, notable temperature dependencies of p values were also observed before and after vulcanization reaction, that is, p values at 130 and $140^{\circ}C$ after vulcanization were observed as about 1/3 of those values before vulcanization. All the observed facts were considered as the results from the interaction between the electrode and the bulk sample materials, i.e., electronic charge-discharge, and from the structure change of samples including CB rearrangement by the vulcanization.

Rheological Properties of a Partially Vulcanized Filled EPDM (부분적으로 가황된 EPDM 배합의 유변학적 특성)

  • Kim, Sang-Koo;Lee, Suck-Hyun
    • Elastomers and Composites
    • /
    • v.22 no.3
    • /
    • pp.213-218
    • /
    • 1987
  • In this study, the rheological properties of a partially valcanized black filled EPDM were investigated as a function of degree of crosslinks using capillary rheometer. In order to obtain the samples having various degree of crosslinks between 0 and 6 percent, the vulcanization kinetics was also studied by Monsanto rheometer. The results showed that the die swell ana the pressure drop at the capillary entrance and exit increase nearly linearly with the increase in degree of crosslinks. However, melt fracture occurred at a lower shear rate for the samples of higher degree of crosslinks. These results were discussed in terms of the melt elasticity produced at the entrance region of capillary by the partial vulcanization. It is also interesting to note that the fluctuation of die swell during the practical extrusion or calendering process in the factories can be caused by the partial vulcanization occurred during the process.

  • PDF

Development of Hybrid RIM Mold to Form Outfit-part for Prototype-cars (시작차용 의장부품 성형을 위한 하이브리드 림 몰드 개발)

  • Yang, Hwa-Jun;Hwang, Po-Jung;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.75-83
    • /
    • 2001
  • RIM(Reaction Injection Molding) is a widely used method to manufacture middle-large size outfit-part for a prototype car. The main advantage of RIM is the capability of manufacturing a small number of prototype parts with less cost and lead time than injection molding which is the most popular method to manufacture plastic parts. Generally, epoxy resin and RTV(Room Temperature Vulcanization) silicon are used as mold materials for RIM, and the selection of mold materials is usually depended upon the industrial environment of manufactures and it decides overall mold making process and part quality. This paper suggests a new mold making process by consolidating the advantages of epoxy resin and RTV silicon based RIM mold to enhance the parts quality while reducing the manufacturing cost and time and shows the competitiveness of the suggested process compared with conventional methods.

  • PDF

Influence of Nano-Cellulose Dispersant on the Vulcanization Characteristics, Viscoelastic Properties, and Mechanical Properties of Silica-SBR Compounds

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.3
    • /
    • pp.215-221
    • /
    • 2020
  • Silica/SBR (styrene-butadiene rubber) compounds are the primary constituents of tire treads. Furthermore, the excellent dynamic viscoelastic properties of silica lead to good fuel efficiencies. However, the silanol group on the surface of silica does not mix well with non-polar rubber because of its polarity. This incompatibility causes aggregation due to the occurrence of hydrogen bonding between the hydroxyl groups, thereby reducing the dispersibility of silica. Recently, the wet master batch (WMB) process has been applied to overcome these disadvantages, and research on silica dispersants that can be used in the WMB process has been increasing. In this study, we prepared silica/SBR compounds by using three types of eco-friendly cellulose-based dispersants in the WMB process, namely: cellulose-, sodium carboxymethyl cellulose, and nanocellulose-based dispersants. Subsequently, we compared the vulcanization characteristics, viscoelastic properties, and mechanical properties of the compounds. The silica dispersibility in the rubber compounds was improved with the addition of the nano-cellulose dispersant, resulting in the enhancement of the workability, hardness, tensile strength, and wear resistance of the SBR compound.

Microwave Application to the Vulcanization of Rubber Compound -(I) The Heating Characteristics of While Carbon by Microwave- (마이크로파를 응용한 Rubber Compound의 가황 - (I) 마이크로파에 의한 White Carbon의 가열특성 -)

  • Park, C.Y.;Kim, J.K.;Min, S.K.
    • Elastomers and Composites
    • /
    • v.32 no.5
    • /
    • pp.318-324
    • /
    • 1997
  • Since the rigid and continuous networks of high-purity silica(white carbon) were relatively transparent to microwaves, high purity silica coupled with microwaves using a zirconia susceptor at room temperature and it was then heated to its melting temperature. The low-purity silica, contained small amount of impurities, yielded greater microwave absorption owing to easy motion of the interstitial alkali ions and it was then heated to its melting temperature. X-ray diffraction patterns of the low-purity silica were broader than those of the high-purity silica due to higher concentration of non-bridging bond and more deformed random network structure. In the vulcanization process of whitened or coloured rubber compound which is employing low-purity silica(white carbon) as a reinforcing filler, vulcanizate could be obtained effectively by microwave heating energy.

  • PDF

Evaluation on the Biodegradability of the MBT Wastewater (MBT 폐수의 생분해성 평가)

  • Lim, Ji-Young;Park, Jung-hwan;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.86-92
    • /
    • 2016
  • The possibility of the biological treatment of MBT wastewater generated from the vulcanization accelerator manufacturing process was investigated. MBT wastewater is not biodegradable because it hinders the activity of microorganisms, and approximately 10% of the total COD can be removed after a 7 day acclimation period. The optimal conditions of the MBT wastewater for the chemical pre-treatment was pH of 3.5 and the Fenton oxidation with the addition of $Fe^{3+}$ to the wastewater after agitation for 2 hours. The Fenton-treated MBT wastewater showed approximately 20% removal of COD when treated with the activated sludge process for the mixed paper wastewater and Fenton treated wastewater.

Study on Rear Door Fixed Glass Weather-strip for Automobiles Using EPDM/Polypropylene Blend (I) (자동차용 Rear Door Fixed Glass Weather-strip 성형을 위한 EPDM과 Polypropylene의 Blend에 관한 연구 (I))

  • Park, Jong-Yun;Hwang, Sung-Hyuk;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.115-121
    • /
    • 2000
  • In comparison with thermosetting rubber, thermoplastic elastomer (TPE) has various advantages such as simple processing, short cycle time and recycling of scrap. These advantages can lead to development of the high value-added rubber products due to reduction of the waste material, manufacturing cost and the defected product. This article involves a dynamic vulcanization method for EPDM/polypropylene blend, and the manufacturing of a fixed glass weather-strip by glass insert molding method using the blend. In order to investigate mechanical properties of the product, tensile strength, elongation, hardness and specific gravity were measured. Also morphological study was carried out using SEM. Developments of an efficient system of production and automatic process by molding of TPE and glass simultaneously are expected.

  • PDF