• 제목/요약/키워드: Vorticity-Velocity Formulation

검색결과 14건 처리시간 0.019초

Numerical Simulation of the Navier-Stokes Equations Using the Artificial Compressibility (AC) Method with the 4th Order Artificial Dissipation Terms

  • Park, Ki-Doo;Lee, Kil-Seong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.516-523
    • /
    • 2009
  • The artificial compressibility (AC) method for the incompressible Navier-Stokes equations in the generalized curvilinear coordinates using the primitive form is implemented. The main advantage of the AC approach is that the resulting system of equations resembles the system of compressible N-S equations and can thus be integrated in time using standard, well-established time-marching methods. The errors, which are the odd-even oscillation, for pressure field in using the artificial compressibility can be eliminated by using the $4^{th}$ order artificial dissipation term which is explicitly included. Even though this paper focuses exclusively on 2D laminar flows to validate and assess the performance of this solver, this numerical method is general enough so that it can be readily extended to carry out 3D URANS simulation of engineering flows. This algorithm yields practically identical velocity profiles and primary vortex and secondary vortices that are in excellent overall agreement with the results of the vorticity-stream function formulation (Ghia et al., 1982). However, the grid resolution have to be required to be large enough to express the various vortices.

  • PDF

저면난류경계층(底面亂流境界層)의 저질이동특성(底質移動特性) (On the Sediment Transport Characteristics of the Bottom Turbulent Boundary Layer)

  • 김남형;키요시 타키카와
    • 대한토목학회논문집
    • /
    • 제13권2호
    • /
    • pp.267-277
    • /
    • 1993
  • 본 논문에서는 유한요소법을 2차원 난류경계층에 적용하였으며, 점성유체의 시간의존 비압축성 운동을 시간과 압력장(場)에서 Navier-Stokes방정식과 vorticity방정식을 이용하여 정식 화하였다. 수치계산방법은 Galerkin방법에 기초하였으며, 난류 경계층의 eddy kinematic viscosity에 대해서는 Prandtl의 혼합거리이론을 도입하였다. 난류 경계층에서 파동에 의한 임의 저면에서 저질의 이동을 수치계산하였다. 유한 요소법에 의해 얻어진 결과는 진동흐름에 의한 경계층과 파동에 의한 경계층에서의 특성의 차이를 분명히 하였다.

  • PDF

RVM을 사용한 큰지름비 동축젯트의 비정상 수치해석 (Numerical Simulation of Unsteady Flow Field behind Widely-Spaced Co-axial Jet using Random Vortex Method)

  • 류명석;강성모;김용모
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.130-138
    • /
    • 1996
  • The transient incompressible flow behind the widely-spaced co-axial jet is numerically simulated using the random vortex method(RVM). This numerical approach is based on the Lagrangian approach for the vorticity formulation of the unsteady Navier-Stokes equations, utilizing vortex elements to account for the convection and diffusion processes. The effects of the mass flow rate of an annular air jet and a central fuel jet on the co-axial jet flow dynamics is investigated. To validate the present procedure, the numerical results are compared with the available experimental data the present procedure, the numerical results are compared with the available experimental data in terms of the centerline and off-centerline profiles of the mean axial velocity. Discrepancies between the RVM results and the measurements are discussed in detail.

  • PDF

Hybrid Particle-Mesh 방법에 적합한 다중영역 방법 (A MULTI-DOMAIN APPROACH FOR A HYBRID PARTICLE-MESH METHOD)

  • 이승재;서정천
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.72-78
    • /
    • 2014
  • A hybrid particle-mesh method as the combination between the Vortex-In-Cell (VIC) method and penalization method has been achieved in recent years. The VIC method, which is based on the vorticity-velocity formulation, offers particle-mesh algorithms to numerically simulate flows past a solid body. The penalization method is used to enforce boundary conditions at a body surface with a decoupling between body boundaries and computational grids. The main advantage of the hybrid particle-mesh method is an efficient implementation for solid boundaries of arbitrary complexity on Cartesian grids. However, a numerical simulation of flows in large domains is still not too easy. In this study, a multi-domain approach is thus proposed to further reduce computation cost and easily implement it. We validate the implementation by numerical simulations of an incompressible viscous flow around an impulsively started circular cylinder.