• Title/Summary/Keyword: Vortex flux flow

Search Result 46, Processing Time 0.033 seconds

Operational Characteristics of Superconducting Amplifier using Vortex Flux Flow

  • Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.260-264
    • /
    • 2008
  • The operational characteristics of superconducting amplifier using vortex flux flow were analyzed from an equivalent circuit in which its current-voltage characteristics for the vortex motion in YBCO microbridge were reflected. For the analysis of operation as an amplifier, dc bias operational point for the superconducting amplifier is determined and then ac operational characteristics for the designed superconducting amplifier were investigated. The variation of transresistance, which describes the operational characteristics of superconducting amplifier, was estimated with respect to conditions of dc bias. The current and the voltage gains, which can be derived from the circuit for small signal analysis, were calculated at each operational point and compared with the results obtained from the numerical analysis for the small signal circuit. From our paper, the characteristics of amplification for superconducting flux flow transistor (SFFT) could be confirmed. The development of the superconducting amplifier applicable to various devices is expected.

A Numerical Study on the Karman Vortex Generated by Breaking of Mountain Wave

  • Sung-Dae Kang;Fujio Kimura
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.105.2-117
    • /
    • 1992
  • The formation mechanism of the vortex streets in the lee of the mountain Is Investigated by a three-dimensional numerical model. The model is based upon the hydrostatic Boussinesq equations in which the vertical turbulent momentum flux is estimated by a turbulence parameterization scheme, but the horizontal viscosity is assumed to be constant. The results show that Karman vortex streets can form even without surface friction in a constant ambient flow with uniform stratification. The vortex formation is related to breaking of the mountain wave, which depends on the Froude number (Fr). In the case of a three-dimensional bell-shaped mountain, the wave breaking occurs when Fr is less than about 0.8, while a barman vortex forms when Fr is less than about 0.22. Vortex formation also depends on Reynolds number, which is estimated from the horizontal diffusivity. The vortex formation can be explained by the wave saturation theory given by Lindzen (1981) with some modification. Simulations in this study show that in the case of Karman vortex formation the momentum flux in the lower level is much larger than the saturated momentum flux, whereas it is almost equal to the saturated momentum at the upper levels as expected from the saturation theory. As a result, large flux divergence is produced in the lower layer, the mean flow is decelerated behind the mountain, and the horizontal wind shear forms between unmodified ambient wind. The momentum exchange between the mean flow and the mountain wave is produced by the turbulence within a breaking wave. From the result, well developed vortices like Karman vortex can be formed. . The results of the momentum budget calculated by the hydrostatic model are almost the same as nonhydrostatic results as long as horizontal scale of the mountain is 10 km. A well developed barman vortex similar to the hydrostatic one was simulated in the nonhydrostatic case. Therefore, we conclude that the hydrostatic assumption is adequate to investigate the origin of the Km8n vortex from the viewpoint of wave breaking.

  • PDF

A Numerical Study on the Karman Vortex Generated by Breaking of Mountain Wave

  • Kang Sung-Dae;Kimura Fujio
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.105-117
    • /
    • 1997
  • The formation mechanism of the vortex streets in the lee of the mountain is investigated by a three-dimensional numerical model. The model is based upon the hydrostatic Boussinesq equations in which the vertical turbulent momentum flux is estimated by a turbulence parameterization scheme, but the horizontal viscosity is assumed to be constant. The results show that Karman vortex streets can form even without surface friction in a constant ambient flow with uniform stratification. The vortex formation is related to breaking of the mountain wave, which depends on the Froude number (Fr). In the case of a three-dimensional bell-shaped mountain, the wave breaking occurs when Fr is less than about 0.8, while a Karman vortex forms when Fr is less than about 0.22. Vortex formation also depends on Reynolds number, which is estimated from the horizontal diffusivity. The vortex formation can be explained by the wave saturation theory given by Lindzen (1981) with some modification. Simulations in this study show that in the case of Karman vortex formation the momentum flux in the lower level is much larger than the saturated momentum flux whereas it is almost equal to the saturated momentum at the upper levels as expected from the saturation theory. As a result, large flux divergence is produced in the lower layer, the mean flow is decelerated behind the mountain, and the horizontal wind shear forms between unmodified ambient wind. The momentum exchange between the mean flow and the mountain wave is produced by the turbulence within a breaking wave. From the result, well developed vortices like Karman vortex can be formed. The results of the momentum budget calculated by the hydrostatic model are almost the same as nonhydrostatic results as long as horizontal scale of the mountain is 10 km. A well developed Karman vortex similar to the hydrostatic one was simulated in the nonhydrostatic case. Therefore, we conclude that the hydrostatic assumption is adequate to investigate the origin of the Karman vortex from the viewpoint of wave breaking.

  • PDF

Numerical simulation of slit wall effect on the Taylor vortex flow with radial temperature gradient

  • Liu, Dong;Chao, Chang-qing;Zhu, Fang-neng;Han, Xi-qiang;Tang, Cheng
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.304-310
    • /
    • 2015
  • Numerical simulation was applied to investigate the Taylor vortex flow inside the concentric cylinders with a constant radial temperature gradient. The reliability of numerical simulation method was verified by the experimental results of PIV. The radial velocity and temperature distribution in plain and 12-slit model at different axial locations were compared, and the heat flux distributions along the inner cylinder wall at different work conditions were obtained. In the plain model, the average surface heat flux of inner cylinder increased with the inner cylinder rotation speed. In slit model, the slit wall significantly changed the distribution of flow field and temperature in the annulus gap, and the radial flow was strengthen obviously, which promoted the heat transfer process at the same working condition.

Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan (전향 축류형 홴에서의 익단 누설 유동 구조)

  • Lee, Gong-Hee;Myung, Hwan-Joo;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.883-892
    • /
    • 2003
  • The experiment using three-dimensional laser Dopperr velocimetery (LDV) measurements and the computation using the Reynolds stress model of the commercial code, FLUENT, were conducted to give a clear understanding on the structure of tip leakage flow in a forward-swept axial-flow fan operating at the maximum efficiency condition. The tip leakage vortex was generated near the position of the minimum wall static pressure, which was located at approximately 12% chord downstream from the leading edge of blade suction side, and developed along the centerline of the pressure trough within the blade passages. A reverse flow between the blade tip region and the casing, induced by tip leakage vortex, acted as a blockage on the through-flow. As a result, high momentum flux was observed below the tip leakage vortex. As the tip leakage vortex proceeded to the aft part of the blade passage, the strength of tip leakage vortex decreased due to the strong interaction with the through-flow and casing boundary layer, and the diffusion of tip leakage vortex caused by high turbulence. In comparison with LDV measurement data, the computed results predicted the complex viscous flow patterns inside the tip region, including the locus of tip leakage vortex center, in a reliable level.

Flow Control on Wind Turbine Airfoil with a Vortex Cell (와류 셀을 이용한 풍력블레이드 에어포일 주위 유동 제어)

  • Kang, Seung-Hee;Kim, Hye-Ung;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.405-412
    • /
    • 2012
  • A flow control on airfoil installed a vortex cell for high efficiency wind turbine blade in stationary and dynamic stall conditions have been numerically investigated by solving the compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with Roe's flux-difference splitting and an implicit time-integration method coupled with dual time step sub-iteration. The computed result for the airfoil in the stationary showed that lift-drag ratio increases due to low pressure by the vortex cell. The oscillating airfoil with the vortex cell showed that the magnitude of hysteresis loop is reduced due to the enhanced vortex in the cell.

Analysis on Vortex Streets Behind a Square Cylinder at High Reynolds Number Using a Large-Eddy Simulation Model: Effects of Wind Direction, Speed, and Cylinder Width (큰에디모의 모형을 이용한 높은 레이놀즈 수에서의 사각 기둥 후면의 와열 분석: 풍향과 풍속, 기둥 너비의 영향)

  • Han, Beom-Soon;Kwak, Kyung-Hwan;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.445-453
    • /
    • 2017
  • This study investigates turbulent flow around a square cylinder mounted on a flat surface at high Reynolds number using a large-eddy simulation (LES) model, particularly focusing on vortex streets behind the square cylinder. Total 9 simulation cases with different inflow wind directions, inflow wind speeds, and cylinder widths in the x- and y-directions are considered to examine the effects of inflow wind direction, speed, and cylinder widths on turbulent flow and vortex streets. In the control case, the inflow wind parallel to the x-direction has a maximum speed of $5m\;s^{-1}$ and the width and height of the cylinder are 50 m and 200 m, respectively. In all cases, down-drafts in front of the cylinder and updrafts, wakes, and vortex streets behind the cylinder appear. Low-speed flow below the cylinder height and high-speed flow above it are mixed behind the cylinder, resulting in strong negative vertical turbulent momentum flux at the boundary. Accordingly, the magnitude of the vertical turbulent momentum flux is the largest near the cylinder top. In the case of an inflow wind direction of $45^{\circ}$, the height of the boundary is lower than in other cases. As the inflow wind speed increases, the magnitude of the peak in the vertical profile of mean turbulent momentum flux increases due to the increase in speed difference between the low-speed and high-speed flows. As the cylinder width in the y-direction increases, the height of the boundary increases due to the enhanced updrafts near the top of the cylinder. In addition, the magnitude of the peak of the mean turbulent momentum flux increases because the low-speed flow region expands. Spectral analysis shows that the non-dimensional vortex generation frequency in the control case is 0.2 and that the cylinder width in the y-direction and the inflow wind direction affect the non-dimensional vortex generation frequency. The non-dimensional vortex generation frequency increases as the projected width of the cylinder normal to the inflow direction increases.

A NUMERICAL STUDY ON HEAT TRANSFER ENHANCEMENT BY PULSATILE FLOW IN A PLATE HEAT EXCHANGER (판형 열교환기의 맥동유동에 의한 열전달 향상에 관한 수치해석연구)

  • Lee, Myung-Sung;Hur, Nahm-Keon;Kang, Byung-Ha
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.93-96
    • /
    • 2006
  • The heat transfer enhancement by pulsatile flow in the plate heat exchanger has been investigated numerically in the present study. The numerical study was performed in the range of the mass flux from 0.04 to 0.12 kg/s. The results showed that the pulsatile flow produces resonating vortex shedding at the groove sharp edges and a strong transient vortex rotation within the grooved channels. As a result, the mixing between the trapped volume in the grooved cavity and the main stream was enhanced. Good agreements between the predictions and measured data are obtained in steady flow. And the heat transfer of pulsatile flow is about 2.4 times than steady flow when frequency is 10 Hz and the mass flux of cold side is 0.04 kg/s.

  • PDF

Heat Transfer Characteristics of the Interaction Between Bulk Flow Pulsation and a Vortex Embedded in a Turbulent Boundary Layer (주유동 맥동과 경계층 와류의 상호작용이 벽면 열전달에 미치는 영향)

  • Gang, Sae-Byeol;Maeng, Du-Jin;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.381-388
    • /
    • 2001
  • Presented are heat data which describe the effect of interaction between bulk flow pulsations and a vortex embedded in a turbulent boundary layer. The pulsation frequencies are 3 Hz, 15 Hz and 30 Hz. A half delta wing with the same height as the boundary layer thickness is used to generate the vortex flow. The convection heat transfer coefficients on a constant heat-flux surface are measured by embedded 77 T-type thermocouples. Spanwise profiles of convection heat transfer coefficients show that upwash region of vortex flow is influenced by bulk flow pulsations. The local heat transfer coefficient increases approximately by 7 percent. The increase in the local change of convection heat transfer coefficient is attributed to the spanwise oscillatory motion of vortex flow especially at the low Strouhal number and to the periodic change of vortex size.

Electroconvective vortex on an Ion Exchange Membrane under Shear Flow (전단흐름 하에 이온교환막 위에서 발생하는 전기수력학적 와류)

  • Kwak, Rhokyun
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.61-69
    • /
    • 2018
  • Ion exchange membrane can transfer only cation or anion in electrically conductive fluids. Recent studies have revealed that such selective ion transport can initiate electroconvective instability, resulting vortical fluid motions on the membrane. This so-called electroconvective vortex (a.k.a. electroconvection (EC)) has been in the spotlight for enhancing an ion flux in electrochemical systems. However, EC under shear flow has not been investigated yet, although most related systems operate under pressure-driven flows. In this study, we present the direct visualization platform of EC under shear flow. On the transparent silicone rubber, microscale channels were fabricated between ion exchange membranes, while allowing microscopic visualization of fluid flow and ion concentration changes on the membranes. By using this platform, not only we visualize the existence of EC under shear flow, its unique characteristics are also identified: i) unidirectional vortex pattern, ii) its advection along the shear flow, and iii) shear-sheltering of EC vortices.