• 제목/요약/키워드: Vortex Merging

검색결과 20건 처리시간 0.017초

RANS Simulation of a Tip-Leakage Vortex on a Ducted Marine Propulsor

  • Kim, Jin;Eric Peterson;Frederick Stern
    • Journal of Ship and Ocean Technology
    • /
    • 제8권1호
    • /
    • pp.10-30
    • /
    • 2004
  • High-fidelity RANS simulations are presented for a ducted marine propulsor, including verification & validation (V&V) using available experimental fluid dynamics (EFD) data. CFDSHIP-IOWA is used with $\textsc{k}-\omega$ turbulence model and extensions for relative rotating coordinate system and Chimera overset grids. The mesh interpolation code PEGASUS is used for the exchange of the flow information between the overset grids. Intervals V&V for thrust, torque, and profile averaged radial velocity just downstream of rotor tip are reasonable in comparison with previous results. Flow pattern displays interaction and merging of tip-leakage and trailing edge vortices. In interaction region, multiple peaks and vorticity are smaller, whereas in merging region, better agreement with EFD. Tip-leakage vortex core position, size, circulation, and cavitation patterns for $\sigma=5$ also show a good agreement with EFD, although vortex core size is larger and circulation in interaction region is smaller.

Interaction of Tip Vortices Generated by a Split Wing

  • Youn, Won Suk;Han, Yong Oun;Lee, Dong Yeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.39-45
    • /
    • 2001
  • To reduce the strength of tip vortex of the fixed wing, a horizontal wing-let splitted into two parts was utilized, and the interaction between vortices generated by these wing-lets was investigated by the hot-wire anemometry. The process of vortex forming and merging was clarified by measurements of velocity vectors and their contours at five downstream cross-sections; 0.05C(chord length), 0.2C, 0.5C, 1.0C and 2.0C. Both vortex-lets formed by each wing-lets rotate counterclockwise and merge into a larger single vortex within a short downstream distance, 0.5C in this case. The strength of the merged tip vortex turned out to become smaller than that of the plain wing tip near the vortex core.

  • PDF

Level Set 법을 이용한 삼차원 이상유동 해석에 관한 연구 (A THREE DIMENSIONAL LEVEL SET METHOD FOR TWO PHASE FLOWS)

  • 강동진;이벨리나이바노바이바노바
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.126-134
    • /
    • 2008
  • We developed a three dimensional Navier-Stokes code based on the level set method to simulate two phase flows with high density ratio. The Navier-Stokes equations with consideration of the surface tension effects are solved by using SIMPLE algorithm on a non-staggered grid. The present code is validated by simulating two test problems. First one is to simulate a rising bubble inside a cube. The thickness of the interface of the bubble is shown to affect the pressure distribution around the interface. As the thickness decreases, the pressure field around the interface becomes more oscillatory. As the bubble rises, a ring vortex is shown to form around the interface and the bubble eventually develops into an ellipsoidal shape. Merge of two bubbles inside a container is secondly tested to show the robustness of the present code for two phase flow simulation. Numerical results show stable and reliable behavior during the process of merging of two bubbles. The velocity and pressure fields around the interface of bubbles are shown oscillation free during the merging of two bubbles.

이차원 와류 병합에 대한 수치적 연구 (Numerical analysis on two-dimensional vortex merger)

  • 박상현;신동진;장경식;곽동기
    • 항공우주시스템공학회지
    • /
    • 제10권1호
    • /
    • pp.1-7
    • /
    • 2016
  • During flight of the aircraft, the vortex merging phenomenon appears under the certain condition between co-rotating vortices which were generated at the wing tip and lifting-surface. And then these merged vortices at both sides show counter-rotating pattern to affect on the downstream of the aircraft. In this paper, the numerical simulations are conducted assuming this phenomenon in two-dimensional co-rotating or counter-rotating vortices pairs. Two-dimensional incompressible Navier-Stokes equations were converted into Vorticity-Streamfunction form and the Galerkin spectral method was adopted. The third order Runge-Kutta method was used for time integration. The effects on the vortex merger and degree of vortex merger were investigated according to time, Reynolds number, and changes in the distance between two vortices.

Evolution of Flame Shape to a Vortex Pair

  • Rhee, Chang-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.623-629
    • /
    • 2001
  • The PSC (Propagation of Surfaces under Curvature) algorithm is adapted to the simulation of a flame propagation in a premixed medium including the effect of volume expansion across the flame front due to exothermicity. The algorithm is further developed to incorporate the flame anchoring scheme. This methodology is successfully applied to numerically simulate the response of an anchored V-flame to two strong free stream vortices, in accord with experimental observations of a passage of Karman vortex street through a flame. The simulation predicts flame cusping when a strong vortex pair interacts with flame front. In other words, this algorithm handles merging and breaking of the flame front and provides an accurate calculation of the flame curvature which is needed for flame propagation computation and estimation of curvature-dependent flame speeds.

  • PDF

LEX를 갖는 삼각날개의 와유동 가시화 (Visualization of Vortex Flow over a Delta Wing with LEX)

  • 손명환;장조원
    • 한국가시화정보학회지
    • /
    • 제2권2호
    • /
    • pp.52-57
    • /
    • 2004
  • The development and interaction of vortices over a delta wing with leading edge extension (LEX) was investigated through off-surface flow visualization using micro water droplets and a laser beam sheet. Angles of attack of $20^{\circ}$ and 24$^{\circ}$ were tested at sideslip angles of $0^{\circ}$, $-5^{\circ}$, and $-10^{\circ}$ The flow Reynolds number based on the main-wing root chord was $1.82{\times}10^{5}$. The wing vortex and the LEX vortex coiled around each other while maintaining comparable strength and identity at a zero sideslip. The increase of angle of attack intensified the coiling and shifted the cores of the wing and LEX vortices inboard and upward. By sideslip, the coiling, the merging and the diffusion of the wing and LEX vortices were increased on the windward side, whereas they were delayed significantly on the leeward side. The present study confirmed that the sideslip angle had a profound effect on the vortex structure and interaction of a delta wing with LEX, which characterized the vortex-induced aerodynamic load.

  • PDF

Concave Surface Boundary Layer Flows in the Presence of Streamwise Vortices

  • Winoto, Sonny H.;Tandiono, Tandiono;Shah, Dilip A.;Mitsudharmadi, Hatsari
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.33-46
    • /
    • 2011
  • Concave surface boundary-layer flows are subjected to centrifugal instability which results in the formation of streamwise counter-rotating vortices. Such boundary layer flows have been experimentally investigated on concave surfaces of 1 m and 2 m radius of curvature. In the experiments, to obtain uniform vortex wavelengths, thin perturbation wires placed upstream and perpendicular to the concave surface leading edge, were used to pre-set the wavelengths. Velocity contours were obtained from hot-wire anemometer velocity measurements. The most amplified vortex wavelengths can be pre-set by the spanwise spacing of the thin wires and the free-stream velocity. The velocity contours on the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different vortex growth regions can be identified. The occurrence of a secondary instability mode is also shown as mushroom-like structures as a consequence of the non-linear growth of the streamwise vortices. Wall shear stress measurements on concave surface of 1 m radius of curvature reveal that the spanwise-averaged wall shear stress increases well beyond the flat plate boundary layer values. By pre-setting much larger or much smaller vortex wavelength than the most amplified one, the splitting or merging of the streamwise vortices will respectively occur.

Numerical study of the effect of periodic jet excitation on cylinder aerodynamic instability

  • Hiejima, S.;Nomura, T.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.141-150
    • /
    • 2002
  • Numerical simulations based on the ALE finite element method are carried out to examine the aerodynamics of an oscillating circular cylinder when the separated shear flows around the cylinder are stimulated by periodic jet excitation with a shear layer instability frequency. The excitation is applied to the flows from two points on the cylinder surface. The numerical results showed that the excitation with a shear layer instability frequency can reduce the negative damping and thereby stabilize the aerodynamics of the oscillating cylinder. The change of the lift phase seems important in stabilizing the cylinder aerodynamics. The change of lift phase is caused by the merger of the vortices induced by the periodic excitation with a shear layer instability frequency, and the vortex merging comes from the high growth rate, the rapid increase of wave number and decrease of phase velocity for the periodic excitation in the separated shear flows.

플라즈마 합성제트를 이용한 사각 실린더 유동의 제어 (CONTROL OF SQUARE CYLINDER FLOW USING PLASMA SYNTHETIC JETS)

  • 김동주;김경진
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.85-92
    • /
    • 2012
  • Flows over a square cylinder with and without plasma actuation are numerically investigated to see whether plasma actuation can effectively modify vortex shedding from the cylinder and reduce the drag and lift fluctuations. In this study, a plasma synthetic jet actuator is mounted on the rear side of cylinder as a means of direct-wake control. The effect of plasma actuation is considered by adding a momentum forcing term in the Navier-Stokes equations. Results show that the reduction of mean drag and lift fluctuations is obtained for both steady and unsteady actuation. However, the steady actuation is better than the unsteady one in terms of mean drag as well as drag fluctuations. With the strong steady actuation considered, the interaction of two separating shear layers from rear corners is effectively weakened due to the interference of synthetic jets. It results in a merging of synthetic-jet and shear-layer vortices and the increase of vortex shedding frequency. On the other hand, the unsteady actuation generates pulsating synthetic jets in the near wake, but it does not change the vortex shedding frequency for the actuation frequencies considered in this study.

이중 삼각날개의 와류에 미치는 스트레이크 평면형상의 영향 (Effects of Strake Planform on the Vortex Flow of a Double-Delta Wing)

  • 손명환;정형석
    • 한국항공우주학회지
    • /
    • 제34권8호
    • /
    • pp.16-23
    • /
    • 2006
  • 본 연구에서는 스트레이크의 형상 변화가 삼각날개의 와류 상호작용과 와류 붕괴 특성에 어떤 영향을 미치는지를 규명하기 위해 세 가지의 서로 다른 평면 형상의 스트레이크를 부착한 이중 삼각 날개 형상에 대하여 유동 가시화(flow visualization)와 날개면 정압 분포 측정의 풍동실험을 수행하였다. 압력 측정 결과 스트레이크의 후퇴각이 증가할수록 날개의 상류 시위 위치에서는 보다 강력하고 집중된 와류가 형성되지만 이 와류는 시위 뒤쪽으로 진행되면서 보다 빨리 와류 붕괴(vortex breakdown)현상을 거치며 약해지는 것을 관측하였다. 가시화 결과에서는 스트레이크의 후퇴각이 증가할수록 스트레이크 와류와 날개 와류간의 roll-up 및 통합 과정이 촉진되는 것이 상류 시위에서 집중된 와류를 발달시키는 원인인 것을 확인할 수 있었다.