Transactions of the Korean Society for Noise and Vibration Engineering
/
v.26
no.3
/
pp.281-289
/
2016
In this paper, a new dynamic model for modal analysis of a rotating cantilever beam with a tip-mass is developed. The nonlinear strain such as von Karman type and the corresponding linearized stress are used to consider the geometric nonlinearity, and Euler-Bernoulli beam theory is applied in the present model. The nonlinear equations of motion and the associated boundary conditions which include the inertia of the tip-mass are derived through Hamilton's principle. In order to investigate modal characteristics of the present model, the linearized equations of motion in the neighborhood of the equilibrium position are obtained by using perturbation technique to the nonlinear equations. Since the effect of the tip-mass is considered to the boundary condition of the flexible beam, weak forms are used to discretize the linearized equations. Compared with equations related to stiffening effect due to centrifugal force of the present and the previous model, the present model predicts the dynamic characteristic more precisely than the another model. As a result, the difference of natural frequencies loci between two models become larger as the rotating speed increases. In addition, we observed that the mode veering phenomenon occurs at the certain rotating speed.
This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.
Dynamic behaviors are analyzed for a flexble spinning disk with angular acceleration, considering geometric nonlinearity. Based upon the Kirchhoff plate theory and the von Karman strain theory, the nonlinear governing equations are derived which are coupled equations with the in-plane and out-of-planedisplacements. The governing equations are discretized by using the Galerkin approximation. With the discretized nonlinear equations, the time responses are computed by using the generalized-$\alpha$ method and the Newton-Raphson method. The analysis shows that the existence of angular acceleration increases the displacements of the spinning disk and makes the disk unstable.
Journal of the Korea institute for structural maintenance and inspection
/
v.6
no.3
/
pp.139-149
/
2002
An explicit direct time integration method based solution algorithm is proposed to predict dynamic postbuckling response of thin plates. Based on the von Karman's plate equations and Marquerre's shallow shell theory, a rectangular plate finite element is formulated and utilized in this study. The element formulation takes into account geometrical nonlinearity and initial deflection of plates. The solution algorithm employs the central difference method. Using the computer program developed by the authors, dynamic postbuckling behavior of elastic thin plates under impact loading is investigated by considering the time variation of load and load duration. The efficiency of the proposed solution algorithm is examined through illustrative numerical examples.
Krommer, Michael;Vetyukova, Yury;Staudigl, Elisabeth
Smart Structures and Systems
/
v.18
no.1
/
pp.155-181
/
2016
In the present paper we discuss the stability and the post-buckling behaviour of thin piezoelastic plates. The first part of the paper is concerned with the modelling of such plates. We discuss the constitutive modelling, starting with the three-dimensional constitutive relations within Voigt's linearized theory of piezoelasticity. Assuming a plane state of stress and a linear distribution of the strains with respect to the thickness of the thin plate, two-dimensional constitutive relations are obtained. The specific form of the linear thickness distribution of the strain is first derived within a fully geometrically nonlinear formulation, for which a Finite Element implementation is introduced. Then, a simplified theory based on the von Karman and Tsien kinematic assumption and the Berger approximation is introduced for simply supported plates with polygonal planform. The governing equations of this theory are solved using a Galerkin procedure and cast into a non-dimensional formulation. In the second part of the paper we discuss the stability and the post-buckling behaviour for single term and multi term solutions of the non-dimensional equations. Finally, numerical results are presented using the Finite Element implementation for the fully geometrically nonlinear theory. The results from the simplified von Karman and Tsien theory are then verified by a comparison with the numerical solutions.
This paper presents nonlinear vibration analysis of a composite cylindrical shell. The core of the shell is made of functionally graded (FG) porous materials and layers is fabricated of carbon nanotubes (CNTs) reinforced nanocomposites. To increase the accuracy of results, neutral surface position is considered. First-order shear deformation theory is used as displacement field to derive the basic relations of equation motions. In addition, von-Karman nonlinear strains are employed to account geometric nonlinearity and to enhance the results' precision, the exact position of the neutral surface is considered. To governing the partial equations of motion, the Hamilton's principle is used. To reduce the equation motions into a nonlinear motion equation, the Galerkin's approach is employed. After that the nonlinear motion equation is solved by multiple scales method. Effect of various parameters such as volume fraction and distribution of CNTs along the thickness directions, different patterns and efficiency coefficients of porous materials, geometric characteristics and initial conditions on nonlinear to linear ratio of frequency is investigated.
Laid Lekouara;Belgacem Mamen;Abdelhakim Bouhadra;Abderahmane Menasria;Kouider Halim Benrahou;Abdelouahed Tounsi;Mohammed A. Al-Osta
Structural Engineering and Mechanics
/
v.86
no.4
/
pp.443-459
/
2023
This study investigates the theoretical thermal buckling analyses of thick porous rectangular functionally graded (FG) plates with different geometrical boundary conditions resting on a Winkler-Pasternak elastic foundation using a new higher-order shear deformation theory (HSDT). This new theory has only four unknowns and involves indeterminate integral variables in which no shear correction factor is required. The variation of material properties across the plate's thickness is considered continuous and varied following a simple power law as a function of volume fractions of the constituents. The effect of porosity with two different types of distribution is also included. The current formulation considers the Von Karman nonlinearity, and the stability equations are developed using the virtual works principle. The thermal gradients are involved and assumed to change across the FG plate's thickness according to nonlinear, linear, and uniform distributions. The accuracy of the newly proposed theory has been validated by comparing the present results with the results obtained from the previously published theories. The effects of porosity, boundary conditions, foundation parameters, power index, plate aspect ratio, and side-to-thickness ratio on the critical buckling temperature are studied and discussed in detail.
An investigation is made in the present work on the post-buckling and geometrically nonlinear behaviors of moderately thick perfect and imperfect rectangular plates made-up of functionally graded materials. Spectral collocation approach based on Legendre basis functions is developed to analyze the functionally graded plates while they are subjected to end-shortening strain. The material properties in this study are varied through the thickness according to the simple power law distribution. The fundamental equations for moderately thick rectangular plates are derived using first order shear deformation plate theory and taking into account both geometric nonlinearity and initial geometric imperfections. In the current study, the domain of interest is discretized with Legendre-Gauss-Lobatto nodes. The equilibrium equations will be obtained by discretizing the Von-Karman's equilibrium equations and also boundary conditions with finite Legendre basis functions that are substituted into the displacement fields. Due to effect of geometric nonlinearity, the final set of equilibrium equations is nonlinear and therefore the quadratic extrapolation technique is used to solve them. Since the number of equations in this approach will always be more than the number of unknown coefficients, the least squares technique will be used. Finally, the effects of boundary conditions, initial geometric imperfection and material properties are investigated and discussed to demonstrate the validity and capability of proposed method.
The vibration of fuel rods in axial flow is a universally recognized issue within both engineering and academic communities due to its significant importance in ensuring structural safety. This paper aims to thoroughly investigate the stability and nonlinear vibration of a fuel rod subjected to axial flow in a newly designed high temperature gas cooled reactor. Considering the possible presence of thermal expansion and large deformation in practical scenarios, the thermal effect and geometric nonlinearity are modeled using the von Karman equation. By applying Hamilton's principle, we derive the comprehensive governing equation for this fluid-structure interaction system, which incorporates the quadratic nonlinear stiffness. To establish a connection between the fluid and structure aspects, we utilize the Galerkin method to solve the perturbation potential function, while employing mode expansion techniques associated with the structural analysis. Following convergence and validation analyses, we examine the stability of the structure under various conditions in detail, and also investigate the bifurcation behavior concerning the buckling amplitude and flow velocity. The findings from this research enhance the understanding of the underlying physics governing fuel rod behavior in axial flow under severe yet practical conditions, while providing valuable guidance for reactor design.
KSCE Journal of Civil and Environmental Engineering Research
/
v.11
no.1
/
pp.79-87
/
1991
An efficient numerical procedure for material and geometric nonlinear analysis of reinforced concrete shells under monotonically increasing loads through their elastic, inelastic and ultimate load ranges is developed by using the finite element method. The 8-node Serendipity isoparametric element developed by the degeneration approach including the transverse shear deformation is used. A layered approach is used to represent the steel reinforcement and to discretize the concrete behavior through the thickness. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearity of the structure. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and a model for reinforcement in the concrete; and also a so-called smeared crack model is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and is modelled as a smeared layer of equivalent thickness. This method will be verified a useful tool to account for geometric and material nonlinearities in detailed analysis of reinforced concrete concrete shells of general form through numerical examples of the sequential paper( ).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.