• Title/Summary/Keyword: Volumetric gear pump

Search Result 10, Processing Time 0.02 seconds

Numerical Simulations of Cavitation Flow in Volumetric Gear Pump (회전 용적형 기어펌프의 캐비테이션 유동 해석)

  • Lee, Jung-Ho;Lee, Sang-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.28-34
    • /
    • 2011
  • A volumetric gear pump is often used in extensive industrial applications to provide both high pressure and sufficiently high flow rate by physical displacement of finite volume of fluid with each revolution. Template mesh function in commercial CFD software, PumpLinx, by which 3-D meshes in the complex region between rotor and housing can be readily generated was employed for 3-D flow simulations. For cavitation analysis full cavitation model was included in 3-D simulations. The results showed high pulsation in pressure and flowrate which is implicated in pump vibration and noise. A model test for cavitation visualization was conducted and the results showed good qualitative agreement with numerical prediction.

The effect of eccentricity between gear and housing in involute gear pump (인벌류트 기어펌프의 기어 편심에 따른 유동특성)

  • Kim, Sung-Hoon;Son, Hye-Min;Lee, Jae-Cheon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.631-637
    • /
    • 2013
  • The characteristics of involute gear pump with eccentric gap between gear tip and housing have been studied in terms of volumetric flow rate and/or flow efficiency. The analysis has been done with FLUENT/R-13 employing with k-e model for the turbulent flow under the given conditions of rotational velocity, gap distance and outlet pressure. The effect of parameters continues to be shown for the eccentric gear as same as for the concentric gear such that the volumetric flow rate (volumetric efficiency) increases as the increases of rotational velocity and decrease of gap distance and of outlet pressure. In the meantime, the shape of pressure build-up appears to be exponentially increase as gap distance decreases at upstream position. The pressure is rapidly developing in the upstream and remains almost constant thereafter in the downstream of circumferential flow path. This typical characteristics becomes more profound as eccentricity increases. The pump performance for the eccentric gear pump with minimum gap distance shows better than its concentric counterpart. However, it shows not for the concentric pump with minimum gap distance. Therefore, the gap reduction due to eccentricity may be positive for pump performance.

Two-dimensional numerical simulation of volumetric gear pump flow (회전용적형 기어펌프 유동의 2차원 수치해석)

  • Lee, Jung-Ho;Park, Jong-Won;Kim, Tae-Goo;Lee, Sang-Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.17-21
    • /
    • 2010
  • A volumetric gear pump is often used in extensive industrial applications to provide both high pressure and sufficiently high flow rate by physical displacement of finite volume of fluid with each revolution. To better understand the unsteady flow characteristics within the pump, numerical simulations were conducted by using moving dynamic meshing (MDM) techniques in commercially available CFD software, FLUENT. The effects of rotor clearance size and rotational speed of rotor on the flow characteristics, specially the temporal variation of velocity and pressure field, which is a main source of flow noise, was investigated. The results showed that significant reverse flow is developed in the rotor clearance and that its size is one of the most important factors affecting flow characteristics and pressure pulsation.

Experimental Verification of Spur Gear Pump based on FEM Analysis (FEM해석 기반 스퍼기어 펌프의 실험적 검증에 대한 연구)

  • Lee, Chan-Woo;Kim, Sang-Yu;Lee, Seo-Han;Kim, Jae-Yeol;Lim, Jin-Hyuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2022
  • This work investigated the performance improvement of a medium-pressure fixed-displacement-type SPUR gear pump, which is mainly used in the machine tool industry. The 3D CFX analysis and IS technique were applied using ANSYS (commercial FEM code) and compared with experimental results to ensure the reliability of the analysis. In addition, the performance improvement of the pump was obtained using the theoretical volumetric displacement equation, and the gear tooth width was changed. The pressure flow performance curves were compared, and the results were analyzed according to the width of the gear teeth. This is a factor that can cause irregular flow, vibration, and noise inside the gear pump owing to friction between the housing and gear pump.

Development of a New Tooth Profile Designed for High Efficiency P/M Internal Gear Pump Rotors

  • Inui, Naoki;Ogata, Daisuke;Sasaki, Harumistu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.940-941
    • /
    • 2006
  • We developed a new tooth profile designed for P/M internal gear pump rotors. The theoretical discharge volume of the new tooth profile internal gear rotors is more than 10% higher than that of the same size conventional rotors. Our new profile rotors can achieve a decrease in torque, and fuel-efficiency will also be improved.

  • PDF

Coatings Properties and Efficiency Performance of Cr-DLC Films Deposited by Hybrid Linear Ion Source for Hydraulic Gear Pump (하이브리드 선형이온원에 의한 유압 기어펌프용 Cr-DLC코팅막의 특성과 효율성능)

  • Cha, Sun-Yong;Kim, Wang-Ryeol;Park, Min-Suk;Kwon, Se-Hun;Chung, Won-Sub;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.456-463
    • /
    • 2010
  • This paper describes the results of the application of Cr-Diamond-like carbon (DLC) films for efficiency improvement through surface modification of spur gear parts in the hydraulic gear pump. Cr-DLC films were successfully deposited on SCM 415 substrates by a hybrid coating process using linear ion source (LIS) and magnetron sputtering method. The characteristics of the films were systematically investigated using FE-SEM, nano-indentation, sliding tester and AFM instrument. The microstructure of Cr-DLC films turned into the dense and fine grains with relatively preferred orientation. The thickness formed in our Cr buffer layer and DLC coating layer were obtained the 487 nm and $1.14\;{\mu}m$. The average friction coefficient of Cr-DLC films considerably decreased to 0.15 for 0.50 of uncoated SCM415 material. The hardness and surface roughness of Cr-DLC films were measured 20 GPa and 10.76 nm, respectively. And then, efficiency tests were performed on the hydraulic gear pump to investigate the efficiency performance of the Cr-DLC coated spur gear. The experimental results show that the volumetric and mechanical efficiency of hydraulic gear pump using the Cr-DLC spur gear were improved up to 2~5% and better efficiency improvement could be attributed to its excellent microstructure, higher hardness, and lower friction coefficient. This conclusion proves the feasibility in the efficiency improvement of hydraulic gear pump for industrial applications.

Investigation of System Efficiency of an Electro-hydrostatic Actuator with an External Gear Pump (소형 외접기어펌프를 사용하는 EHA의 시스템 효율 분석)

  • Kim, Jong-Hyeok;Hong, Yeh-Sun
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.15-21
    • /
    • 2019
  • In this study, the maximum system efficiency of the electro-hydrostatic actuators was experimentally investigated, where small size external gear pumps with volumetric displacement under 1.3 cc/rev were combined with a 400W servomotor as the prime mover. Since the efficiency data of the servomotor, gear pumps and hydraulic cylinder were not provided by the suppliers, experimental apparatuses for their efficiency measurement were extra built up. When a gear pump with a volumetric displacement of 1.27cc/rev was used on an electro-hydrostatic actuator system, the maximum system efficiency was not higher than 70%. This was because the most effective operation ranges of the motor and pump did not coincide each other. In order to match their operation ranges as one of the most crucial design factors, a speed reduction mechanism can be used, such as a timing belt. It was shown in the study that the maximum system efficiency could be increased from 70% to 76% in that way.

A Study on Contamination Sensitivity and Condition Monitoring for a Pump (펌프의 오염 민감도와 성능 감시에 대한 연구)

  • 이재천
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.124-130
    • /
    • 1998
  • A mathematical model describing gear pump flow degradation in the presense of abrasive particles is presented. The model considers the operating parameters as Sommerfeld number, so that contamination sensitivity test results could be conversed to field application to predict contamination service life. A method to estimate the volumetric efficiency and the contamination level of a pump is proposed by measuring the temperature differences in the fluid. Test results show the validity of the theoretical establishments.

  • PDF

Optimal Wear Design for a Hypotrochoidal Gear Pump without Hydrodynamic Effect (하이포 트로코이드 기어 펌프의 건식 마멸 최적설계)

  • Kwon, Soon-Man;Sim, Mu-Yong;Nam, Hyoung-Chul;Shin, Joong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1383-1392
    • /
    • 2009
  • A disadvantage in the design of a hypotrochoidal gear pump as in a gerotor pump is a lack of parts that can be adjusted to compensate for wear in the rotor set, and as a consequence, it causes a sharp reduction of volumetric efficiency. In this paper, an attempt has been made to reduce the wear rate between the rotors of a hypotrochoidal gear pump. Using the knowledge of shape design on the rotors, the contact stresses without hydrodynamic effect between the rotors' teeth are evaluated through the calculation of the Hertzian contact stress. Based on the above result and the sliding velocity between the rotors, a genetic algorithm (GA) is used as an optimization technique for minimizing the wear rate proportional factor (WRPF). The result shows that the wear rate or the WRPF can be reduced considerably, e.g. approximately 12.8% in this paper, throughout the optimization using GA.

A Study on Performance Improvement of Industrial Oil Pump Using Computational Analysis (전산해석을 이용한 산업용 오일펌프 성능개선에 관한 연구)

  • Kim, Jin-Woo;Lee, Hyun-Jun;Kong, Seok-Hwan;Lee, Seong-Won;Chung, Won-Ji
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1111-1117
    • /
    • 2022
  • Recently, interest in the circular economy has emerged in the industry. As a result, interest in Re-manufacturing, which makes old equipment similar to new products, is growing. In the machine tool industry with many aging equipment, the Re-manufacturing industry is essential, and among them, research on the performance improvement of gear type oil pumps was conducted. The purpose was to achieve the target performance of flow rate and volume efficiency by changing the shape of the gear pump housing clearance and inlet/outlet, and Computational Fluid Analysis and Central Composite Design were conducted using ANSYS CFX 2022 R2 and MINITAB®. The level of each determined factor was determined. 20 design points were derived, and the Flow Rate at each design point was calculated, and the Theoretical Flow Rate was calculated to obtain Volumetric Efficiency. The optimal design point was obtained when the Flow Rate was 140 lpm and the Volumetric Efficiency was maximum, the optimal design point was obtained when both were maximum, and the Surface Plot for each factor was obtained to identify the tendency.