Convolutional Neural Networks (CNNs) have recently been gaining popularity in the medical image analysis field because of their image segmentation capabilities. In this paper, we present a CNN that performs automated brain tumor segmentations of sparsely annotated 3D Magnetic Resonance Imaging (MRI) scans. Our CNN is based on 3D U-net architecture, and it includes separate Dilated and Depth-wise Convolutions. It is fully-trained on the BraTS 2018 data set, and it produces more accurate results even when compared to the winners of the BraTS 2017 competition despite having a significantly smaller amount of parameters.
본 논문에서는 볼륨 의료영상 분할에 대한 기존의 레벨 셋 기법과 제안하는 방법의 성능을 비교하고자 한다. 기존의 방법들은 영역의 정보만을 이용하여 분할을 시행하므로, 영상의 종류에 따라서 정확한 분할을 못한 경우가 있다. 따라서 새롭게 제안하는 방법은 정확한 분할 결과를 위하여 영상의 객체가 가지고 있는 에지 정보와 영역 정보를 함께 이용한다. 에지 정보는 레벨 셋의 곡면이 객체의 표면에 잘 도달할 수 있도록 해주는 기울기 벡터장을 이용하고, 영역 정보는 각 영역에서 픽셀의 밝기 값을 가우시안 분포를 이용하여 통계적 모델로 적합시킴으로써 영상의 분할에 적용하였다. 또한, 곡면 주변 잡음의 영향을 최소화 시켜주는 정규화 항을 사용한다. 기존의 레벨 셋 기반의 방법들과 제안한 방법의 성능 평가를 위하여 실제 볼륨 의료영상에 대하여 다양한 실험을 실시하고, 분할된 결과의 비교를 통하여 제안된 방법의 우수성을 입증한다.
In this paper, we represented the variation of heart cavity area in the space domain by 3-d rendering. We arranged the 2-d sequence of ultrasonic image acquired in the time domain as volumetric data, and extracted heart cavity region from 3-d data. For the segmentation of 3-d volume data, we extracted the cavity region using the method of expanding the cavity region that is same statistical property. By shading which is using light and object normal vector, we visualized the volume data on image plane.
Objective: To evaluate the usefulness of the ventricular volume percentage quantified using three-dimensional (3D) brain computed tomography (CT) data for interpreting serial changes in hydrocephalus. Materials and Methods: Intracranial and ventricular volumes were quantified using the semiautomatic 3D threshold-based segmentation approach for 113 brain CT examinations (age at brain CT examination ≤ 18 years) in 38 patients with hydrocephalus. Changes in ventricular volume percentage were calculated using 75 serial brain CT pairs (time interval 173.6 ± 234.9 days) and compared with the conventional assessment of changes in hydrocephalus (increased, unchanged, or decreased). A cut-off value for the diagnosis of no change in hydrocephalus was calculated using receiver operating characteristic curve analysis. The reproducibility of the volumetric measurements was assessed using the intraclass correlation coefficient on a subset of 20 brain CT examinations. Results: Mean intracranial volume, ventricular volume, and ventricular volume percentage were 1284.6 ± 297.1 cm3, 249.0 ± 150.8 cm3, and 19.9 ± 12.8%, respectively. The volumetric measurements were highly reproducible (intraclass correlation coefficient = 1.0). Serial changes (0.8 ± 0.6%) in ventricular volume percentage in the unchanged group (n = 28) were significantly smaller than those in the increased and decreased groups (6.8 ± 4.3% and 5.6 ± 4.2%, respectively; p = 0.001 and p < 0.001, respectively; n = 11 and n = 36, respectively). The ventricular volume percentage was an excellent parameter for evaluating the degree of hydrocephalus (area under the receiver operating characteristic curve = 0.975; 95% confidence interval, 0.948-1.000; p < 0.001). With a cut-off value of 2.4%, the diagnosis of unchanged hydrocephalus could be made with 83.0% sensitivity and 100.0% specificity. Conclusion: The ventricular volume percentage quantified using 3D brain CT data is useful for interpreting serial changes in hydrocephalus.
A platform is developed for fast and effective functional mapping of human brain, which can allow semi-automatically the whole processes of an image segmentation, a fusion of MR and PET images, and 3-D rendering of volumetric data, including DICOM-based image transfers from PACS archiver within a short period of time.
방사선과 의사들은 CT 및 MRI 스캐너로부터 얻어진 인체의 단면 영상을 연속적으로 보고 실제 3차원적으로 인체가 어떻게 구성되어 있는지를 상상하여 병변을 구별하는데, 의학영상을 이용한 인체 장기의 3차원 시각화는 2차원 형태의 인체 단면 영상들을 복잡한 알고리즘이나 고성능의 컴퓨팅 파워를 사용하여 실제 인체와 같이 3차원으로 재구성하여 보여준다. 단면 영상의 추적, 관심영역의 표시 및 추출등과 같은 2차원 영상분석은 시간이 많이 소모되고, 주관적일 수가 있으며, 수작업인 관계로 빈번한 에러가 발생하는 단점을 가지는데, 이와 같은 2차원 의료 영상 분석의 단점을 보완하기 위해 의학영상처리 기술과 접목한 3차원 의료 영상의 시각화는 필수적이라 할 수 있다. 명암값 임계치 방법, 영역확장(region growing) 방법, 윤곽선(contour) 추출 방법 및 변형모델(deformable model) 방법을 사용하여 인체의 각 장기를 분리하였으며, 텍스쳐분석(texture analysis)을 통하여 고안된 특징자를 이용하여 암 부분을 인식하는데 사용하였고, 원근투영(perspective projection) 및 볼륨 데이터의 표면을 렌더링하기 위해 마칭큐브(marching cube) 알고리즘을 사용하였다. 인체 및 분리된 장기에 대한 3차원 시각화는 방사선치료계획(radiation treatment planning), 외과 수술계획, 모의수술, 중재적(interventional)시술 및 영상유도수술(image guided surgery)에 효과적으로 사용될 수 있다.
Kim, Ju Ho;Choi, Dae Seob;Kim, Seong-hu;Shin, Hwa Seon;Seo, Hyemin;Choi, Ho Cheol;Son, Seungnam;Tae, Woo Suk;Kim, Sam Soo
Investigative Magnetic Resonance Imaging
/
제19권2호
/
pp.67-75
/
2015
Purpose: To investigate the value of image post-processing software (FreeSurfer, IBASPM [individual brain atlases using statistical parametric mapping software]) and inversion time (TI) in volumetric analyses of the hippocampus and to identify differences in comparison with manual tracing. Materials and Methods: Brain images from 12 normal adults were acquired using magnetization prepared rapid acquisition gradient echo (MPRAGE) with a slice thickness of 1.3 mm and TI of 800, 900, 1000, and 1100 ms. Hippocampal volumes were measured using FreeSurfer, IBASPM and manual tracing. Statistical differences were examined using correlation analyses accounting for spatial interpretations percent volume overlap and percent volume difference. Results: FreeSurfer revealed a maximum percent volume overlap and maximum percent volume difference at TI = 800 ms ($77.1{\pm}2.9%$) and TI = 1100 ms ($13.1{\pm}2.1%$), respectively. The respective values for IBASPM were TI = 1100 ms ($55.3{\pm}9.1%$) and TI = 800 ms ($43.1{\pm}10.7%$). FreeSurfer presented a higher correlation than IBASPM but it was not statistically significant. Conclusion: FreeSurfer performed better in volumetric determination than IBASPM. Given the subjective nature of manual tracing, automated image acquisition and analysis image is accurate and preferable.
Byunggeon Park;Jongmin Park;Jae-Kwang Lim;Kyung Min Shin;Jaehee Lee;Hyewon Seo;Yong Hoon Lee;Jun Heo;Won Kee, Lee;Jin Young Kim;Ki Beom Kim;Sungjun Moon;Sooyoung, Choi
Korean Journal of Radiology
/
제21권11호
/
pp.1256-1264
/
2020
Objective: Lung segmentation using volumetric quantitative computed tomography (CT) analysis may help predict outcomes of patients with coronavirus disease (COVID-19). The aim of this study was to investigate the relationship between CT volumetric quantitative analysis and prognosis in patients with COVID-19. Materials and Methods: CT images from patients diagnosed with COVID-19 from February 18 to April 15, 2020 were retrospectively analyzed. CT with a negative finding, failure of quantitative analysis, or poor image quality was excluded. CT volumetric quantitative analysis was performed by automated volumetric methods. Patients were stratified into two risk groups according to CURB-65: mild (score of 0-1) and severe (2-5) pneumonia. Outcomes were evaluated according to the critical event-free survival (CEFS). The critical events were defined as mechanical ventilator care, ICU admission, or death. Multivariable Cox proportional hazards analyses were used to evaluate the relationship between the variables and prognosis. Results: Eighty-two patients (mean age, 63.1 ± 14.5 years; 42 females) were included. In the total cohort, male sex (hazard ratio [HR], 9.264; 95% confidence interval [CI], 2.021-42.457; p = 0.004), C-reactive protein (CRP) (HR, 1.080 per mg/dL; 95% CI, 1.010-1.156; p = 0.025), and COVID-affected lung proportion (CALP) (HR, 1.067 per percentage; 95% CI, 1.033-1.101; p < 0.001) were significantly associated with CEFS. CRP (HR, 1.164 per mg/dL; 95% CI, 1.006-1.347; p = 0.041) was independently associated with CEFS in the mild pneumonia group (n = 54). Normally aerated lung proportion (NALP) (HR, 0.872 per percentage; 95% CI, 0.794-0.957; p = 0.004) and NALP volume (NALPV) (HR, 1.002 per mL; 95% CI, 1.000-1.004; p = 0.019) were associated with a lower risk of critical events in the severe pneumonia group (n = 28). Conclusion: CRP in the mild pneumonia group; NALP and NALPV in the severe pneumonia group; and sex, CRP, and CALP in the total cohort were independently associated with CEFS in patients with COVID-19.
변형모델(deformable model)은 볼륨의료영상(volumetric medical image)으로부터 복잡한 인체기관의 3차원적 경계를 분할해내기 위해 효과적인 방법을 제공한다. 그러나, 기존 변형모델은 초기와 의존성, 오목한 경계(concavity) 분할의 비적합성, 그리고 모델내 요소간 자체교차(self-intersection)의 제한점을 가지고 있었다. 본 연구에서는 이러한 제한점을 극복하고, 오목한 구조를 포함하는 복잡한 인체기관의 경계를 분할하기에 적합한 새로운 변형모델을 제안하였다. 제안한 변형모델은 볼륨영상 피라미드(pyramid)를 기반으로 다해상도(multiresolution)의 모델 정제화(refinement)를 수행한다. 다해상도 모델 정제화는 전역적 시셈플링(global resampling) 및 지역적 리샘플링(local resampling)를 통하여 저해상도의 모델로부터 점차 고해상도의 모델로 이동하면서 객체의 경계를 계층적으로 분할해가는 방법이다. 다해상도 모델에 의한 계층적 경계 분할은 초기화 조건에의 의존성을 극복할 수 있게할 뿐 아니라, 빠른 속도로 원하는 객체의 경계에 수렴할 수 있게 한다. 또한 지역적 리샘플링은 모델 구성요소의 정규화를 수행함으로써 객체의 오목한 부분을 성공적으로 분할할 수 있게 한다. 그리고, 제안 모델은 기존 변형모델에서 포함하는 내부 힘(internal force)과 외부 힘(external force)외에 자체교차방지 힘(non-self-intersection force)을 추가함으로서 효과적으로 모델내의 자체교차를 방지할 수 있게 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.