• Title/Summary/Keyword: Volumetric Error Equation

Search Result 9, Processing Time 0.017 seconds

A Study on the Volumetric Error Equation of Coordinate Measuring Machines and their Application (3차원 좌표측정기(CMM)의 오차방정식 유도에 관한 연구)

  • 이응석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1545-1553
    • /
    • 1995
  • For general geometry of Coordinate Measuring Machine (CMM), volumetric error equation including 21 systematic error components was showed using vector expression. Different types of CMM listed on an international standard (BS 6808) were classified according to their geometry, and the general volumetric error equation was used for the CMMs. Application of volumetric error equation was also introduced, such as position error compensation, error equation of CNC-machine and parametric error analysis, etc.

Volumetic Error Compensation of a Coordinate Measuring Machine using a Software Method (3차원 좌표 측정기의 Software에 의한 Volumetric 오차 교정)

  • Park, June-Ho;Lee, Eung-Suk;Yang, Jong-Hwa;Cho, So-Hyug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.158-164
    • /
    • 1994
  • A volumetric error compensation method was stueide with measuring systematic error of a Coordinate Measuring Machine(CMM). The volumetric error equations were proposed for a Moving Bridge type CMM. Using the error equations, error vectors in the measuring volume were corrected by a software method. The CMM was controlled by the compensation program separately in the measuring and moving function of the CMM proving. The linear accuracy of the CMM was measured by the Laser Interferometer and compared with the data before the volumetric error compensation. This method was proved as low cost and effective to reduce the systematic error of the CMM, as no hardware modification is required.

  • PDF

Effects of the Method of Changing Compression Ratio on Engine Performance in an SI Engine (가솔린 엔진에서 압축비 변경 방법이 성능에 미치는 영향)

  • 이원근;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.27-33
    • /
    • 2001
  • In this study, it is observed that the distribution of combustion chamber volume affects the volumetric efficiency. The distribution ratio was adjusted by controlling combustion chamber volume of head and piston bowl one. Four cases were investigated, which are the combination of different distribution ratios and different compression ratios (9.8-10.0). A commercial SOHC 3-valve engine was modified by cutting the bottom face of the head and/or replacing the piston by the one that has different volume. The result shows that the less the head side volume, the more volumetric efficiency is achieved under the same compression ratio. It is also observed that increasing volumetric efficiency results in early knock occurrence due to increased "real" compression ratio. To consider reliability in estimating the volumetric efficiency, we examined the sensitivity of the AFR equation to possible errors in emission measurements. It is shown that the volumetric efficiency, which is calculated by measuring AFR and fuel consumption, can be controlled in 1% error. 1% error.

  • PDF

Development of a Real-Time Soil Moisture Meter using Oscillation Frequency Shift Method

  • Kim, Ki-Bok;Lee, Nam-Ho;Lee, Jong-Whan;Lee, Seoung-Seok;Noh, Sang-Ha
    • Agricultural and Biosystems Engineering
    • /
    • v.2 no.2
    • /
    • pp.63-68
    • /
    • 2001
  • The objective of this study was to develop a real-time soil moisture meter using RF impedance. The impedance suchas capacitance and resistance (or conductance) was analyzed using parallel cylinder type capacitance probe(C-probe) and Q-meter (HP4342). The capacitance and conductance of soil increased as volumetric water content increased. The 5 MHz of modified Colpitts type crystal oscillator was designed to detect the capacitance change of the C-probe with moist soil. A third order polynomial regression model was proposed to describe the relationship between RF impedance and volumetric water content. The prototype real time moisture meter consisted of the C-probe, sample container, oscillator, frequency counter and related signal processing units. The calibration equation for measurement of volumetric moisture content of soil was developed and validated. The correlation coefficient and root mean square error between measured volumetric water content by oven method and predicted values by prototype moisture meter for unknown soil samples were 0.984 and 0.032$cm^3$$cm\^3$, respectively.

  • PDF

Measurement Method for Geometric Errors of Ultra-precision Roll Mold Machine Tool: Simulation (초정밀 롤 금형 가공기의 기하학적 오차 측정 방법: 모의실험)

  • Lee, Kwang-Il;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1087-1093
    • /
    • 2013
  • In this study, a measurement method of double ball-bar is proposed to measure the geometric errors of an ultra-precision roll mold machine tool. A volumetric error model of the machine tool is established to investigate the effects of the geometric errors to a radius error and a cylindricity of the roll mold. A measurement path is suggested for the geometric errors, and a ball-bar equation is derived to represent the relation between the geometric errors and a measured data of the double ball-bar. Set-up errors, which are inevitable at the double ball-bar installation, also are analyzed and are removed mathematically for the measurement accuracy. In addition, standard uncertainty of the measured geometric errors is analyzed to determine the experimental condition. Finally, the proposed method is tested and verified through simulation.

A study on the development of simulation program for the small naturally aspirated four-stroke diesel engine (소형 4행정사이클 무과급 디이젤 기관의 성능 시뮤레이션 전산프로그램의 개발에 관한 연구)

  • 백태주;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.17-36
    • /
    • 1984
  • Since 1973, the competition on the development of fuel saving type internal combustion engines has become severe by the two times oil shock, and new type engines are reported every several months. Whenever these new type engines are developed, new designs are required and they will be offered in the market after performing the endurance test for a long time. But the engine market is faced with a heavy burden of finance, as the developing of a new engine requires tremendous expenses. For this reason, the computer simulation method has been lately developed to cope with it. The computer simulation method can be available to perform the reasonable research works by the theoretical analysis before carrying out practical experiments. With these processes, the developing expenses are cut down and the period of development is curtailed. The object of this study is the development of simulation computer program for the small naturally aspirated four-stroke diesel engine which is intended to product by the original design of our country. The process of simulation is firstly investigated for the ideal engine cycle, and secondly for the real engine cycle. In the ideal engine cycle, each step of the cycle is simulated by the energy balance according to the first law of thermodynamics, and then the engine performance is calculated. In the real cycle imulation program, the injection rate, the preparation rate and the combustion rate of fuel and the heat transfer through the wall of combustion chamber are considered. In this case, the injection rate is supposed as constant through the crank angle interval of injection and the combustion rate is calculated by the Whitehouse-Way equation and the heat transfer is calculated by the Annand's equation. The simulated values are compared with measured values of the YANMAR NS90(C) engine and Mitsubishi 4D30 engine, and the following conclusions are drawn. 1. The heat loss by the exhaust gas is well agree with each other in the lower load, but the measured value is greater than the calculated value in the higher load. The maximum error rate is about 15% in the full load. 2. The calculated quantity of heat transfer to the cooling water is greater than the measured value. The maximum error rate is about 11.8%. 3. The mean effective pressure, the fuel consumption, the power and the torque are well agree with each other. The maximum error is occurred in the fuel consumption, and its error rate is about 7%. From the above remarks, it may be concluded that the prediction of the engine performance is possibly by using the developed program, although the program needs to reform by adding the simulation of intake and exhaust process and assumping more reliable mechanical efficiency, volumetric efficiency, preparation rate and combustion rate.

  • PDF

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation (시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법)

  • Lee, Jae Seong;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.409-415
    • /
    • 2022
  • Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.

Creep Characteristics of Unconsolidated Shale (미고결 셰일의 크립 특성)

  • Chang, Chan-Dong;Zoback, Mark
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.195-200
    • /
    • 2006
  • Laboratory creep experiments show that compaction of unconsolidated shale is an irrecoverable process caused by viscous time-dependent deformation. Using Perzyna's viscoplasticity framework combined with the modified Cam-clay theory, we found the constitutive equation expressed in the form of strain rate as a power law function of the ratio between the sizes of dynamic and static yield surfaces. We derived the volumetric creep strain at a constant hydrostatic pressure level as a logarithmic function of time, which is in good agreement with experimental results. The determined material constants indicate that the yield stress of the shale increases by 6% as strain rate rises by an order of magnitude. This demonstrates that the laboratory-based prediction of yield stress (and porosity) may result in a significant error in estimating the properties in situ.

  • PDF

Calculation of Direct Runoff Hydrograph considering Hydrodynamic Characteristics of a Basin (유역의 동수역학적 특성을 고려한 직접유출수문곡선 산정)

  • Choi, Yun-Ho;Choi, Yong-Joon;Kim, Joo-Cheol;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.157-163
    • /
    • 2011
  • In this study, after the target basin was divided into both overland and channel grids, the travel time from center of each grid cell to watershed's outlet was calculated based on the manning equation. Through this process, volumetric discharge was calculated according to the isochrones and finally, the direct runoff hydrograph was estimated considering watershed's hydrodynamic characteristics. Sanseong subwatershed located in main stream of Bocheong basin was selected as a target basin. The model parameters are only two: area threshold and channel velocity correction factor; the optimized values were estimated at 3,800 and 3.3, respectively. The developed model based on the tuned parameters led to well-matching results between observed and calculated hydrographs (mean of absolute error of peak discharge: 3.41%, mean of absolute error of peak time: 0.67 hr). Moreover, the analysis results regarding histogram of travel time-contribution area demonstrates that the proposed model characterizes relatively well hydrodynamic characteristics of the catchment due to effective rainfall.