• Title/Summary/Keyword: Volumetric Efficient

Search Result 72, Processing Time 0.022 seconds

High efficient vision system for volumetric display (입체영상 디스플레이를 위한 고효율 비젼 시스템)

  • Kim, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5130-5133
    • /
    • 2013
  • Volumetric display has many applications recently in education, 3D movie, medical images but these applications have several problems that need to be overcome. Volumetric display may process a amount of visual data and design the high efficient vision system for realtime display. The stereo data for volumetric display estimated the disparity vectors from the stereoscopic sequences has been transmitted the disparity vectors, motion vectors and residual images with the reference images, and the stereoscopic sequences have been reconstructed at the receiver for 3D display. Central issue for efficient 3D display lies in selecting an appropriate stereo matching with robust vision system. In this paper, high efficient vision system is proposed for efficient stereo image matching and the experimental results represent high efficiency for proposed 3D display system.

Volumetric Image System for High Efficiency Video Coding (고효율 비디오코딩을 위한 입체영상시스템)

  • Kim, Sang Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.515-520
    • /
    • 2016
  • Volumetric image system has many applications recently in education, 3D movie, medical images but these applications have several problems that need to be overcome. Volumetric display may process a amount of visual data and design the high efficient vision system for realtime display. In case of stereo system for volumetric display motion vectors, disparity vectors from the stereoscopic sequences and residual images with the reference images has been transmitted, and the stereoscopic sequences have been reconstructed at the receiver for volumetric display. So central issue for the design of efficient volumetric image system lies in selecting an appropriate stereo matching and robust vision system. In this paper, we proposed high efficient vision system, which design vision stage with rotating and moving horizontally, and match the successive stereo image efficiently. In experimental results with volumetric image system, the proposed method represents high efficiency with minimizing error and low computational load for volumetric display.

Effectual Method FOR 3D Rebuilding From Diverse Images

  • Leung, Carlos Wai Yin;Hons, B.E.
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.145-150
    • /
    • 2008
  • This thesis explores the problem of reconstructing a three-dimensional(3D) scene given a set of images or image sequences of the scene. It describes efficient methods for the 3D reconstruction of static and dynamic scenes from stereo images, stereo image sequences, and images captured from multiple viewpoints. Novel methods for image-based and volumetric modelling approaches to 3D reconstruction are presented, with an emphasis on the development of efficient algorithm which produce high quality and accurate reconstructions. For image-based 3D reconstruction a novel energy minimisation scheme, Iterated Dynamic Programming, is presented for the efficient computation of strong local minima of discontinuity preserving energyy functions. Coupled with a novel morphological decomposition method and subregioning schemes for the efficient computation of a narrowband matching cost volume. the minimisation framework is applied to solve problems in stereo matching, stereo-temporal reconstruction, motion estimation, 2D image registration and 3D image registration. This thesis establishes Iterated Dynamic Programming as an efficient and effective energy minimisation scheme suitable for computer vision problems which involve finding correspondences across images. For 3D reconstruction from multiple view images with arbitrary camera placement, a novel volumetric modelling technique, Embedded Voxel Colouring, is presented that efficiently embeds all reconstructions of a 3D scene into a single output in a single scan of the volumetric space under exact visibility. An adaptive thresholding framework is also introduced for the computation of the optimal set of thresholds to obtain high quality 3D reconstructions. This thesis establishes the Embedded Voxel Colouring framework as a fast, efficient and effective method for 3D reconstruction from multiple view images.

  • PDF

High efficient 3D vision system using simplification of stereo image rectification structure (스테레오 영상 교정 구조의 간략화를 이용한 고효율 3D 비젼시스템)

  • Kim, Sang Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.605-611
    • /
    • 2019
  • 3D Vision system has many applications recently but popularization have many problems that need to be overcome. Volumetric display may process a amount of visual data and design the high efficient vision system for display. In case of stereo system for volumetric display, disparity vectors from the stereoscopic sequences and residual images with the reference images has been transmitted, and the reconstructed stereoscopic sequences have been displayed at the receiver. So central issue for the design of efficient volumetric vision system lies in selecting an appropriate stereo matching and robust vision system. In this paper, we propose high efficient vision system with the reduction of rectification error which can perform the 3D data extraction efficiently with low computational complexity. In experimental results with proposed vision system, the proposed method can perform the 3D data extraction efficiently with reducing rectification error and low computational complexity.

OpenVolMesh: Generic and Efficient Data Structure for 3D Volumetric Meshes (OpenVolMesh: 삼차원 볼륨 기반의 메쉬 표현을 위한 범용적이고 효과적인 자료 구조)

  • Kim, Jun-Ho;Seo, Jin-Seok;Oh, Sei-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.85-92
    • /
    • 2008
  • Meshes are the most appropriate data structures for representing 3D geometries. Surface meshes have been frequently used for representing 3D geometries, which only samples data on the surfaces of the given 3D geometries. Thanks to the improvements of computing powers, it is required to develop more complicated contents which utilize the volumetric information of 3D geometries. In this paper, we introduce a novel volumetric mesh libraries based on the half-face data structure, called OpenVolMesh, and describe its designs and implementations. The OpenVolMesh extends the OpenMesh, which is one of the most famous mesh libraries, by supporting volumetric meshes. The OpenVolMesh provides the generic programming, dynamic allocations of primitive properties, efficient array-based data structures, and source-level compatibility with OpenMesh. We show the usefulness of the OpenVolMesh in the developments of 3D volumetric contents with prototypic implementations such as volumetric mesh smoothing and CW-cell decompositions.

Volumetric NURBS Representation of Multidimensional and Heterogeneous Objects: Concepts and Formation (VNURBS기반의 다차원 불균질 볼륨 객체의 표현: 개념 및 형성)

  • Park S. K.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.5
    • /
    • pp.303-313
    • /
    • 2005
  • This paper proposes a generalized NURBS model, called Volumetric NURBS or VNURBS for representing volumetric objects with multiple attributes embedded in multidimensional space. This model provides a mathematical framework for modeling complex structure of heterogeneous objects and analyzing inside of objects to discover features that are directly inaccessible, for deeper understanding of complex field configurations. The defining procedure of VNURBS, which explains two directional extensions of NURBS, shows VNURBS is a generalized volume function not depending on the domain and its range dimensionality. And the recursive a1gorithm for VNURBS derivatives is described as a computational basis for efficient and robust volume modeling. In addition, the specialized versions of VNURBS demonstrate that VNURBS is applicable to various applications such as geometric modeling, volume rendering, and physical field modeling.

An Efficient Virtual Teeth Modeling for Dental Training System

  • Kim, Lae-Hyun;Park, Se-Hyung
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.41-44
    • /
    • 2009
  • This paper describes an implementation of virtual teeth modeling for a haptic dental simulation. The system allows dental students to practice dental procedures with realistic tactual feelings. The system requires fast and stable haptic rendering and volume modeling techniques working on the virtual tooth. In our implementation, a volumetric implicit surface is used for intuitive shape modification without topological constraints and haptic rendering. The volumetric implicit surface is generated from input geometric model by using a closest point transformation algorithm. And for visual rendering, we apply an adaptive polygonization method to convert volumetric teeth model to geometric model. We improve our previous system using new octree design to save memory requirement while increase the performance and visual quality.

Robust and Efficient 3D Model of an Electromagnetic Induction (EMI) Sensor

  • Antoun, Chafic Abu;Perriard, Yves
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.325-330
    • /
    • 2014
  • Eddy current induction is used in a wide range of electronic devices, for example in detection sensors. Due to the advances in computer hardware and software, the need for 3D computation and system comprehension is a requirement to develop and optimize such devices nowadays. Pure theoretical models are mostly limited to special cases. On the other hand, the classical use of commercial Finite Element (FE) electromagnetic 3D models is not computationally efficient and lacks modeling flexibility or robustness. The proposed approach focuses on: (1) implementing theoretical formulations in 3D (FE) model of a detection device as well as (2) an automatic Volumetric Estimation Method (VEM) developed to selectively model the target finite elements. Due to these two approaches, this model is suitable for parametric studies and optimization of the number, location, shape, and size of PCB receivers in order to get the desired target discrimination information preserving high accuracy with tenfold reduction in computation time compared to commercial FE software.

A Reverse Kinematic Approach for Error Analysis of a Machine tool Using Hemispherical Helix Ball bar test (반구상의 나선형 볼바측정을 통한 공작기계 오차해석의 역기구학적 접근)

  • Yang, Seung-Han;Kim, Ki-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.143-151
    • /
    • 2001
  • Machine tool errors have to be characterized and predicted to improve machine tool accuracy. A real-time error compensation system has been developed based on volumetric error synthesis model which is composed of machine tool errors. This paper deals with new algorithm about verification of machine tool errors. This new algorithm uses a simplified volumetric error synthesis model. This simplified model is constructed with only main components among the error components of the machine. The main error components are analyzed by ball bar test of hemispherical helix. The novel measurement method using ball bar system has many advantages which are more efficient, easier to use than conventional measurement system.

  • PDF

The enhancement of 3-dimensional positioning accuracy by measuring error factors for CNC machine tools (공작기계의 오차요소 측정을 통한 3차원 위치정밀도 향상)

  • 손진욱;서석환;정세용;이응석;위현곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.260-265
    • /
    • 1994
  • Efforts have been devoted to developing rapid and accurate methods for measuring the errors of machine tools. The method os measurement and calibration of machine tool errors should be general and efficient. The objective of this study is to show in detail the full sequence from the measurement of errors factors to the verification of the positioning accuracy after compensation for the volumetric error. In this paper, we described the steps in measuring the volumetric error parameters, a general error model composed of error parameters, temperature, and the desired position. The validity of the error calibration methods proposed in this paper was tested using a vertical 3-axis CNC machine with a laser interferometer and a ball bar.

  • PDF