• Title/Summary/Keyword: Volumetric 3D display

Search Result 30, Processing Time 0.022 seconds

Volumetric 3D Display System Based on Rotating Dot-Matrix LEDs

  • Lin, Yuanfang;Liu, Xu;Zhang, Xiaojie;Yao, Yi;Liu, Xiangdong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.440-441
    • /
    • 2004
  • A volumetric three-dimensional (3D) display system was presented, which utilizes a rotating two-dimensional (2D) display panel of light emitting diodes (LEDs) to generate more than 10 million volume pixels (voxels) within a cylindrical volume of 165 mm in height and 292 mm in diameter. Due to persistence of vision, momentarily addressed voxel information is perceived and fused into a 3D image. Important cues for depth perception, such as binocular parallax, accommodation, convergence and motion parallax are satisfied automatically and naturally, thus it is suitable for individual or group viewing, without the need for any special visual aids.

  • PDF

Eyestrain-free Bi-Focal 3D Projection Display System

  • Seo, Jong-Wook;Kim, Tae-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1739-1741
    • /
    • 2007
  • A 3D projection display using stacked screens to display the near and far images, respectively, is developed. The front screen is made of a scattering polarizer film, and the far image on the rear screen is clearly visible through it. The image is perceived as three-dimensional, and no eyestrain is suffered.

  • PDF

Hole-filling Method to Enhance Viewing Characteristics for Multilayer Type 3D Display System U sing a DMD

  • Baek, Hogil;Choi, Sungwon;Kim, Hyunho;Choi, Hee-Jin;Min, Sung-Wook
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.545-550
    • /
    • 2020
  • We propose a hole-filling method to solve discontinuous depth representation and to reduce the visible seams and cracks that cause the limitation of the viewing angle of the three-dimensional (3D) image in the multilayer type 3D display system. The occlusion and the disocclusion regions between layers, such as the visible seams and cracks, are a major bottleneck of the multilayer type 3D display system to represent a volumetric 3D image by stacking multiple images. As a result, in the reconstructed 3D image, the visible seams and cracks appear as brighter overlapping and undesirable cut-off. In order to resolve the problems above, we applied the depth-fused effect to the sub-depth map generating algorithm and improve the viewing characteristics of the multilayer type 3D display. The experimental demonstrations are also provided to verify the proposed scheme.

3D Volumetric Medical Image Coding Using Unbalanced Tree (3차원 불균형 트리 구조를 가진 의료 영상 압축에 대한 연구)

  • Kim, Young-Seop;Cho, Jae-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.2 s.15
    • /
    • pp.19-25
    • /
    • 2006
  • This paper focuses on lossy medical image compression methods for medical images that operate on three-dimensional(3-D) irreversible integer wavelet transform. We offer an application of unbalanced tree structure algorithm to medical images, using a 3-D unbalanced wavelet decomposition and a 3-D unbalanced spatial dependence tree. The wavelet decomposition is accomplished with integer wavelet filters implemented with the lifting method. We have tested our encoder on volumetric medical images using different integer filters and coding unit sizes. The coding unit sizes of 16 slices save considerable dynamic memory(RAM) and coding delay from full sequence coding units used in previous works. If we allow the formation of trees of different lengths, then we can accomodate more transaxial scales than three. The encoder and decoder can then keep track of the length of the tree in which each pixel resides through the sequence of decompositions. Results show that, even with these small coding units, our algorithm with certain filters performs as well and better in lossy coding than previous coding systems using 3-D integer unbalanced wavelet transforms on volumetric medical images.

  • PDF

Gamma Correction on Volumetric 3D Display System

  • Yao, Yi;Liu, Xu;Lin, Yuanfang;Xue, Hui;Liu, Xiangdong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.221-223
    • /
    • 2005
  • To make real 3D vision available, we have established a volumetric 3D display system that based on rotating LED matrix. The paper introduced a method to correct the problem that pixels are not symmetrical but circumferential in space, which causes the resolution of the edge area much lower than that of the central area.

  • PDF

Research and Development Trends in Three-dimensional (3D) Displays (공간표시 디스플레이 연구 및 개발 동향)

  • Cho, S.M.;Hwang, C.S.;Choi, J.H.;Kim, Y.H.;Cheon, S.H.;Choi, K.H.;Kim, J.Y.;Yang, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.65-80
    • /
    • 2020
  • In this article, we review the study trends of three-dimensional (3D) displays that can display stereoscopic images from the perspective of a display device. 3D display technology can be divided into light field, holographic, and volume displays. Light field display is a display that can reproduce the intensity and direction of light or 'ray' in each pixel. It can display stereoscopic images with less information than a holographic display and does not require coherence of the light source. Therefore, it is expected that it will be commercialized before the holographic display. Meanwhile, the holographic display creates a stereoscopic image by completely reproducing the wavefront of an image using diffraction in terms of wave characteristics of light. This technology is considered to be able to obtain the most complete stereoscopic image, and the digital holographic display using a spatial light modulator (SLM) is expected to be the ultimate stereoscopic display. However, the digital holographic display still experiences the problem of a narrow viewing angle due to the finite pixel pitch of the SLM. Therefore, various attempts have been made at solving this problem. Volumetric display is a technology that directly creates a stereoscopic image by forming a spatial pixel, which is known as a volumetric pixel, in a physical space, and has a significant advantage in that it can easily solve the problem of the viewing angle. This technology has already been tested for commercial purposes by several leading companies. In this paper, we will examine recent research trends regarding these 3D displays and near-eye display that is emerging as a significant application field of these technologies.

Wheel Screen Type Lamina 3D Display System with Enhanced Resolution

  • Baek, Hogil;Kim, Hyunho;Park, Sungwoong;Choi, Hee-Jin;Min, Sung-Wook
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2021
  • We propose a wheel screen type Lamina 3D display, which realizes a 3D image that can satisfy the accommodation cue by projecting volumetric images encoded by varying polarization states to a multilayered screen. The proposed system is composed of two parts: an encoding part that converts depth information to states of polarization and a decoding part that projects depth images to the corresponded diffusing layer. Though the basic principle of Lamina displays has already been verified by previous studies, those schemes suffered from a bottleneck of inferior resolution of the 3D image due to the blurring on the surfaces of diffusing layers in the stacked volume. In this paper, we propose a new structure to implement the decoding part by adopting a form of the wheel screen. Experimental verification is also provided to support the proposed principle.

Implementation of AR Remote Rendering Techniques for Real-time Volumetric 3D Video

  • Lee, Daehyeon;Lee, Munyong;Lee, Sang-ha;Lee, Jaehyun;Kwon, Soonchul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.90-97
    • /
    • 2020
  • Recently, with the growth of mixed reality industrial infrastructure, relevant convergence research has been proposed. For real-time mixed reality services such as remote video conferencing, the research on real-time acquisition-process-transfer methods is required. This paper aims to implement an AR remote rendering method of volumetric 3D video data. We have proposed and implemented two modules; one, the parsing module of the volumetric 3D video to a game engine, and two, the server rendering module. The result of the experiment showed that the volumetric 3D video sequence data of about 15 MB was compressed by 6-7%. The remote module was streamed at 27 fps at a 1200 by 1200 resolution. The results of this paper are expected to be applied to an AR cloud service.

Double-Layer 3D Rear Projection Display System using Scattering Polarizer Film (후면투사 방식의 이중스크린 3D 프로젝션 디스플레이)

  • Kim, Tae-Ho;Seo, Jong-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.421-425
    • /
    • 2007
  • A new 3D rear projection display system using double-layer polarization-selective screen systems, one stacked in front of the other, has been developed. The front and rear screens are made of scattering polarizer films, and they either diffuse-scatter or transmit the incident light depending on the polarization state of the light. The near and for images are projected onto the front and rear screens, respectively, using light waves with mutually orthogonal polarization states. The new display system produces clear high-resolution images, which are visible over a wide range of viewing angle. It was found that the impression of depth is pronounced and eyestrain is only comparable to that by 2D display systems.

Three-dimensional image processing using integral imaging method (집적 영상법을 이용한 3차원 영상 정보 처리)

  • Min, Seong-Uk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.150-151
    • /
    • 2005
  • Integral imaging is one of the three-dimensional(3D) display methods, which is an autostereoscopic method. The integral imaging system can provide volumetric 3D image which has both vertical and horizontal parallaxes. The elemental image which is obtained in the pickup process by lens array has the 3D information of the object and can be used for the depth perception and the 3D correlation. Moreover, the elemental image which represents a cyber-space can be generated by computer process.

  • PDF