• 제목/요약/키워드: Volume-of-Fluid

검색결과 1,416건 처리시간 0.032초

Analysis of Blood Flow Interacted with Leaflets in MHV in View of Fluid-Structure Interaction

  • Park, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.613-622
    • /
    • 2001
  • Interaction of blood flow and leaflet behavior in a bileaflet mechanical heart valve was investigated using computational analysis. Blood flows of a Newtonian fluid and a non-Newtonian fluid with Carreau model were modeled as pulsatile, laminar, and incompressible. A finite volume computational fluid dynamics code and a finite element structure dynamics code were used concurrently to solve the flow and structure equations, respectively, where the two equations were strongly coupled. Physiologic ventricular and aortic pressure waveforms were used as flow boundary conditions. Flow fields, leaflet behaviors, and shear stresses with time were obtained for Newtonian and non-Newtonian fluid cases. At the fully opened phase three jets through the leaflets were found and large vortices were present in the sinus area. At the very final stage of the closing phase, the angular velocity of the leaflet was enormously large. Large shear stress was found on leaflet tips and in the orifice region between two leaflets at the final stage of closing phase. This method using fluid-structure interaction turned out to be a useful tool to analyze the different designs of existing and future bileaflet valves.

  • PDF

나노 채널에서의 표면 거칠기와 경계 습윤의 효과 (Effects of Surface Roughness and Interface Wettability in a Nanochannel)

  • 추연식;서인수;이상환
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.5-11
    • /
    • 2010
  • The nanofluidics is characterized by a large surface-to-volume ratio, so that the surface properties strongly affect the flow resistance. We present here the results showing that the effect of wetting properties and the surface roughness may considerably reduce the friction of fluid past the boundaries. For a simple fluid flowing over hydrophilic and hydrophobic surfaces, the influences of surface roughness are investigated by the nonequilibrium molecular dynamics (NEMD) simulations. The fluid slip at near a solid surface highly depends on the wall-fluid interaction. For hydrophobic surfaces, apparent fluid slips are observed on smooth and rough surfaces. The solid wall is modeled as a rough atomic sinusoidal wall. The effects on the boundary condition of the roughness characteristics are given by the period and amplitude of the sinusoidal wall. It was found that the slip velocity for wetting conditions at interface decreases with increasing effects of surface roughness. The results show the surface rougheness and wettability determines the slip or no-slip boundary conditions. The surface roughness geometry shows significant effects on the boundary conditions at the interface.

관로에서 점성유체 유동의 압력파 전달에 관한 연구 (A Study on the Pressure Wave Propagation of Viscous Fluid Flow in a Pipe Line)

  • 김형오;나기대;모양우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.835-840
    • /
    • 2000
  • The objective of the present study is to investigate the characteristics of pressure wave propagation of viscous fluid flow in a circular pipe line. The goal of this study is to select the best frequency of each control factor of a circular pipe. We intend to approach a formalized mathematical model by a very exact and reasonable polynomial for fluid transmission lines. and we computed this mathematical model by computer. The results show that the oil viscosity decreased as the length of the circular pipe increases. and The energy of pressure wave propagation decreased as the pipe diameter decreases. The factor is that density of oil was changed resonant frequency. It has been found the viscosity characteristics is changed largely by length of hydraulic pipe and volume of cavity tank.

  • PDF

Dynamic characteristics and response analysis of accelerating underwater structures

  • Liu, Zhengxing;Williams, F.W.;Jemah, A.K.
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.613-632
    • /
    • 1998
  • A coupling system for a structure accelerating through a fluid is considered which is composed of the structure and the fluid in a finite surrounding volume. Based on the variational principle, the finite element equations of hydrodynamic pressure and structural elastic vibration are deduced. A numerical method is given for the dynamic character and response of the structure which takes the coupled fluid into account. The effect of axial inertial forces on the dynamic character and response of rapidly accelerating structures is also considered.

유한차분법에 의한 2차원 탱크내의 유체유동해석 (Analysis of Fluid Flow in Two-dimensional Tank by Finite Difference Method)

  • 이경중;이기표
    • 대한조선학회지
    • /
    • 제24권3호
    • /
    • pp.9-16
    • /
    • 1987
  • In this paper, the fluid flow in the two-dimensional tank is analyzed by the Finite Difference Method. The Navier-Stokes equation is modified for the tank fixed coordinate system. For the treatment of the free surface, the Volume of Fluid Method by Hirt and Nichols is adopted. The continuity equation and the Poisson equation which is derived from the Navier-Stokes equation to find the pressure are solved by the Successive-Line-Overrelaxation Method. The comparison of the calculated results with experimental data show a favorable agreement. The fluid flow in the two-dimensional tank can be predicted reasonably before the free surface reaches breaking by this numerical method.

  • PDF

난포액내 정자유인물질의 분석 (Analysis of Sperm Chemoattractant in Follicular Fluid)

  • 박영식
    • 한국수정란이식학회지
    • /
    • 제14권1호
    • /
    • pp.47-57
    • /
    • 1999
  • Among proteins separated from methanol extract of follicular fluid with superose column, the components inducing sperm swim-up separation through sucrose layer were analysed with superose column in Smart system and SDS-PAGE. And the results obtained were as follows; The fractions of retention volume (RV) 0.83ml and RV 1.36ml separated with superose column should stimulate sperm migration and movement. However, RV 0.83 fraction was consisted of complex materials containing RV 1.36 component. RV 1.36 fraction contained a BSA analogue of 67 kilodaltons (Kd) and showed identical peak pattern with BSA fraction V. In conclusion, the protein of 67 Kd in follicular fluid should stimulate sperm migration and movement.

  • PDF

회전용적형 기어펌프의 유체-구조연동 전산해석 (FLUID-STRUCTURE INTERACTION ANALYSIS OF EXTERNAL GEAR PUMP)

  • 이중호;김태구;이상욱
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.83-85
    • /
    • 2010
  • A hydraulic gear pump is widely used in many industrial applications to provide both high pressure and high flow rate by physical displacement of finite volume of fluid with each revolution. In this study, two dimensional fluid-structure interaction simulation of gear pump flow was carried out to examine detailed complex flow patterns and structural stress distribution on rotors by using a commercial software ADINA. The effect of rotor clearance size on the flow characteristics, specially the temporal variation of velocity and pressure field, which is a main source of flow noise, also was investigated.

  • PDF

유기랭킨사이클과 암모니아-물 랭킨사이클의 열역학적 성능의 비교 해석 (Comparative Thermodynamic Analysis of Organic Rankine Cycle and Ammonia-Water Rankine Cycle)

  • 김경훈;김만회
    • 한국수소및신에너지학회논문집
    • /
    • 제27권5호
    • /
    • pp.597-603
    • /
    • 2016
  • In this paper a comparative thermodynamics analysis is carried out for organic Rankine cycle (ORC) and ammonia-water Rankine cycle (AWRC) utilizing low-grade heat sources. Effects of the working fluid, ammonia concentration, and turbine inlet pressure are systematically investigated on the system performance such as mass flow rate, pressure ratio, turbine-exit volume flow, and net power production as well as the thermal efficiency. Results show that ORC with a proper working fluid shows higher thermal efficiency than AWRC, however, AWRC shows lower mass flow rate of working fluid and lower pressure ratio of expander than ORC.

EXACT SOLUTION FOR STEADY PAINT FILM FLOW OF A PSEUDO PLASTIC FLUID DOWN A VERTICAL WALL BY GRAVITY

  • Alam, M.K.;Rahim, M.T.;Islam, S.;Siddiqui, A.M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제16권3호
    • /
    • pp.181-192
    • /
    • 2012
  • Here in this paper, the steady paint film flow on a vertical wall of a non-Newtonian pseudo plastic fluid for drainage problem has been investigated. The exact solution of the nonlinear problem is obtained for the velocity profile. Also the average velocity, volume flux, shear stress on the wall, force to hold the wall in position and normal stress difference have been derived. We retrieve Newtonian case, when material constant ${\mu}_1$ and relaxation time ${\lambda}_1$ equal zero. The results for co-rotational Maxwell fluid is also obtained by taking material constant ${\mu}_1$ = 0. The effect of the zero shear viscosity ${\eta}_0$, the material constant ${\mu}_1$, the relaxation time ${\lambda}_1$ and gravitational force on the velocity profile for drainage problem are discussed and plotted.