• 제목/요약/키워드: Volume-of-Fluid

검색결과 1,423건 처리시간 0.033초

초음속기체-금속액체 분사기의 미립화 과정에 대한 수치해석 (Numerical Study on the Atomization Process of a Supersonic Gas-Metallic Liquid Atomizer)

  • 황원섭;김귀순;최정열
    • 한국항공우주학회지
    • /
    • 제44권7호
    • /
    • pp.593-602
    • /
    • 2016
  • 본 연구에서는 근접연계방식의 초음속기체 금속분말 미립화장치에 대한 수치해석을 수행하였다. 액체금속의 미립화 과정에서 발생하는 1, 2차 액적분열을 모사하기 위해서 난류 모델을 선정하고 VOF(Volume of Fluid), DPM(Discrete Phase Model) 해석을 차례대로 수행하였다. 해석결과, Level-Set function 분포도를 통해 1차 분열액적의 직경을 계산할 수 있었으며 이 데이터를 DPM 해석에 반영해 도메인 출구에서 수집된 입자들의 최종직경분포를 확인할 수 있었다.

A numerical parametric study on hydrofoil interaction in tandem

  • Kinaci, Omer Kemal
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.25-40
    • /
    • 2015
  • Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM) and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM). RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid.

비등유로의 압력강하 요동특성 (Characteristics of Pressure-Drop Oscillations in a Boiling Channel)

  • 김병주;신광섭
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.132-141
    • /
    • 1995
  • Characteristics of pressure-drop oscillations(PDO) in a boiling channel were studied numerically and compared with experimental data. Effects of initial and boundary conditions on PDO were investigated in terms of oscillation period and amplitude. The period and amplitude of PDO increased with increasing of the compressible volume in the surge tank and the heat input. PDO occurred within the specific range of the fluid temperature, at which oscillation period and amplitude diminished rapidly with the increase of the fluid temperature. The increase of the loss coefficient in fluid supply line resulted in slightly longer oscillation period and larger amplitude. Numerical results showed good agreement with the experimental data.

  • PDF

수중 초음파를 이용한 적조 플랑크톤의 후방산란 특성 (Characteristics of Backscattering of Harmful Algae Using Underwater Ultrasound)

  • 김은혜;복태훈;나정열;팽동국
    • 한국음향학회지
    • /
    • 제24권8호
    • /
    • pp.447-453
    • /
    • 2005
  • 수중 초음파 (5, 10, 15 MHz)를 사용하여 적조 플랑크톤 Cochlodinium polykrikoides (식물 플랑크톤, 편모조류)의 후방산란 특성을 파악하기 위한 음향 실험을 실시하였다 적조 산란체의 적조주의보 (300 cells/a) 보다 적은 양의 개체 수 변화를 탐지하였고, 개체군 밀도와 후방 산란신호와의 상관관계를 시간영역에서와 주파수 영역에서 확인하였다. 또한, fluid-sphere model[1]을 이용한 이론적인 체적 산란강도를 계산하여 실측 체적 산란강도와 비교한 결과가 잘 일치하였다.

항공기 공력특성 예측을 위한 Navier-Stokes 방정식 기반의 정적 유체-구조 연계 해석 시스템 (A Static Fluid-Structure Interaction Analysis System Based on the Navier-Stokes Equations for the Prediction of Aerodynamic Characteristics of Aircraft)

  • 정성기;두옹안호앙;이영민;이진희;명노신;조태환
    • 한국항공우주학회지
    • /
    • 제36권6호
    • /
    • pp.532-540
    • /
    • 2008
  • 최근 구조변형을 고려한 항공기의 공력특성을 계산하는데 필요한 CFD와 CSD 기법이 연계된 FSI 시스템에 관한 관심이 증대하고 있다. 본 연구에서는 유체유발 구조 변형을 고려한 수렴된 구조형상에 대한 공력특성 예측을 위해 유체-구조 연계 시스템인 FSI(Fluid- Structure Interaction)를 구축하였다. 각 모듈의 연계, 특히 CSD와 CFD의 결합 및 변형된 형상에 대한 공력격자 재생성을 위해 VSI(Volume Spline Interpolation)와 격자 변형 코드를 개발하였으며, 공력과 구조의 해석 모듈로 상용 프로그램인 FLUENT와 NASTRAN을 사용하였다. 구축된 시스템을 DLR-F4 날개에 적용하여 정적 유체-구조 연구를 수행하였으며, 그 결과 마하수 0.75에서 변형된 형상에 대한 양력 및 항력 계수는 약 20.26%, 18.5% 감소하는 것으로 나타났다.

딱딱한 막대 모양 분자로 이루어진 1차원 유체의 통계 역학적 분석 (A Statistical-Mechanical Analysis of One-Dimensional Fluid of Rigid Rods)

  • 임경희
    • 한국응용과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.45-50
    • /
    • 2009
  • Three-dimensional, statistical-mechanical formulations of problems are usually untractable analytically, and therefore they are commonly solved numerically. However, their one-dimensional counterparts are always to be solved analytically. In general analytical solutions sheds more insights to the problems than numerical solutions. Hence, solutions of one-dimensional problems may provide key properties to the problems, when they are extended to three dimensions. In this article, thermodynamic properties of one-dimensional fluid comprising molecules of rigid rods are analyzed statistical-mechanically. Molecules of rigid rods are characterized with repulsive or excluded volume effect. It is observed that this feature is well reflected in thermodynamic functions such as Helmholtz free energy. volumetric equation of state. chemical potential, entropy, etc.

Electrorheological Performance of Chitosan Sebacicate Suspension as an Anhydrous ER Fluid

  • Choi, Ung Su;Ko, Young Gun;Jee, Han Soon;Lee, Sang Shun
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.71-74
    • /
    • 2001
  • The electrorheological(ER) performance of a chitosan sebaciate suspension in silicone oil was investigated by varying the electric fields, volume fractions of particles, and shear rates, respectively. The chitosan sebacicate susepnsion showed a typical ER response caused by the polarizability of an amide polar group and shear yield stress due to the formation of multiple chains upon application of an electric field. The shear stress for the suspension exhibited a linear dependence on the volume fraction of particles and an electric field power of 1.88. On the basis of the results, the newly synthesized chitosan sebacicate suspension was found to be an anhydrous ER fluid.

  • PDF

접면포착법에 의한 수중익 주위의 이층류 유동계산 (Computation of Two-Fluid Flows with Submerged hydrofoil by Interface Capturing Method)

  • 곽승현
    • 한국항만학회지
    • /
    • 제13권1호
    • /
    • pp.167-174
    • /
    • 1999
  • Numerical analysis of two-fluid flows for both water and air is carried out. Free-Surface flows with an arbitrary deformation have been simulated around two dimensional submerged hydrofoil. The computation is performed using a finite volume method with unstructured meshes and an interface capturing scheme to determine the shape of the free surface. The method uses control volumes with an arbitrary number of faces and allows cell-wise local mesh refinement. the integration in space is of second order based on midpoint rule integration and linear interpolation. The method is fully implicit and uses quadratic interpolation in time through three time levels The linear equation systems are solved by conjugate gradient type solvers and the non-linearity of equations is accounted for through picard iterations. The solution method is of pressure-correction type and solves sequentially the linearized momentum equations the continuity equation the conservation equation of one species and the equations or two turbulence quantities.

  • PDF

Numerical Study of Wave Run-up around Offshore Structure in Waves

  • Cha, Kyung-Jung;Jung, Jae-Hwan;Yoon, Hyun-Sik;Chun, Ho-Hwan;Koo, Bon-Guk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권2호
    • /
    • pp.61-66
    • /
    • 2016
  • This study presents the wave run-up height and depression depth around offshore cylindrical structures according to the wave period. The present study employs the volume of fluid method with the realizable turbulence model based on a commercial computational fluid dynamics software called the "STAR-CCM+" to simulate a 3D incompressible viscous two-phase turbulent flow. The present results for the wave run-up height and depression depth with regard to the wave period are compared with those of the relevant previous experimental and numerical studies.

루우프형 2상 유동 열사이폰의 응축열전달 특성에 관한 연구 (A Study on the Characteristics of Condensation Heat Transfer of Two-Phase Loop Thermosyphons)

  • 박종운;조동현
    • 수산해양교육연구
    • /
    • 제26권4호
    • /
    • pp.894-901
    • /
    • 2014
  • This study concerns the performance of condensation heat transfer in two-phase loop thermosyphons. In the present work, R134a has been used as the working fluid. Liquid fill charge ratio defined by the ratio of working fluid volume to total internal volume of thermosyphon, heat flux and wind speed of condensation have been used as the experimental parameters. The results show that the filling rate of working fluid and heat flux are very important factors for the operation of two-phase loop thermosyphons. The optimum liquid fill charge ratio for the best condensation heat transfer rate was 80%.