• Title/Summary/Keyword: Volume reconstruction

Search Result 417, Processing Time 0.021 seconds

Adaptive Moment-of-Fluid Method: a New Volume-Tracking Method for Multiphase Flow Computation

  • Ahn, Hyung-Taek;Shashkov, Mikhail
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.334-336
    • /
    • 2008
  • A novel adaptive mesh refinement (AMR) strategy based on the Moment-of-Fluid (MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroid given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

  • PDF

ADAPTIVE MOMENT-OF-FLUID METHOD : A NEW VOLUME-TRACKING METHOD FOR MULTIPHASE FLOW COMPUTATION

  • Ahn, Hyung-Taek
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • A novel adaptive mesh refinement(AMR) strategy based on the Moment-of-Fluid(MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The adaptive mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroids given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

Easy and Simple Techniques to Reconstruct Natural Nailfold with the Wrap-around Flap for Finger Reconstruction

  • Takeo Matsusue
    • Archives of Plastic Surgery
    • /
    • v.49 no.6
    • /
    • pp.764-768
    • /
    • 2022
  • The wrap-around flap (WAF) has become a popular approach to thumb reconstruction because the results are functionally and cosmetically excellent. By modifying to a partial toenail transfer, the WAF can also be used for finger reconstruction. However, performing cosmetically superior finger reconstruction is a significant challenge because it is difficult to reconstruct the natural nailfold by partial nail transplantation, although partial nail transplantation is required to reconstruct a narrow fingernail. One side of the reconstructed lateral nailfold tends to be a missing nail margin, and one side of the proximal nailfold angle tends to be retracted. Based on the rationale that loss of the lateral nailfold volume due to the postoperative tension of the volar flap would result in a missing nail margin, the volume of the lateral nailfold was maintained with a single thread that was passed from the nail to the volar flap. Additionally, half of the proximal nailfold from the nail plate was elevated to advance it forward. The results indicated that a cosmetically natural nailfold was achieved with the WAF approach to finger reconstruction. These easy and simple techniques enable reconstruction of a cosmetically natural nailfold using WAF for finger reconstruction.

Partial Breast Reconstruction Using Various Oncoplastic Techniques for Centrally Located Breast Cancer

  • Park, Hyo Chun;Kim, Hong Yeul;Kim, Min Chul;Lee, Jeong Woo;Chung, Ho Yun;Cho, Byung Chae;Park, Ho Yong;Yang, Jung Dug
    • Archives of Plastic Surgery
    • /
    • v.41 no.5
    • /
    • pp.520-528
    • /
    • 2014
  • Background As the breast cancer incidence has increased, breast-conserving surgery has replaced total mastectomy as the predominant procedure. However, centrally located breast cancers pose significant challenges to successful breast-conserving surgeries. Therefore, we performed partial mastectomy and oncoplastic procedures on centrally located breast cancer as a means of partial breast reconstruction. The authors examined and evaluated the functional and aesthetic usefulness of this reconstruction method. Methods From January 2007 to June 2011, 35 patients with centrally located breast cancers who underwent various oncoplastic procedures based on the breast size and resection volume. The oncoplastic procedures performed included volume displacement surgical techniques such as purse-string suture, linear suture, and reduction mammaplasty. Other oncoplastic procedures included volume replacement procedures with an adipofascial, thoracoepigastric, intercostal artery perforator, thoracodorsal artery perforator, or latissimus dorsi flap. Results Mean patient age was 49 years, and mean follow-up period was 11 months. In cases of small to moderate-sized breasts and resection volumes <50 g, volume displacement procedures were performed. In cases of resection volumes >50 g, volume replacement procedures were performed. In cases of larger breasts and smaller resection volumes, glandular reshaping was performed. Finally, in cases of larger breasts and larger resection volumes, reduction mammaplasty was performed. This reconstruction method also elicits a high patient satisfaction rate with no significant complications. Conclusions In centrally located breast cancer, oncoplastic surgery considering breast size and resection volume is safe and provides appropriate aesthetic outcomes. Therefore, our method is advisable for breast cancer patients who elect to conserve their breasts and retain a natural breast shape.

A simple calculation for the preoperative estimation of transverse rectus abdominis myocutaneous free flap volume in 2-stage breast reconstruction using a tissue expander

  • Kono, Hikaru;Ishii, Naohiro;Takayama, Masayoshi;Takemaru, Masashi;Kishi, Kazuo
    • Archives of Plastic Surgery
    • /
    • v.45 no.4
    • /
    • pp.333-339
    • /
    • 2018
  • Background Flap volume is an important factor for obtaining satisfactory symmetry in breast reconstruction with a transverse rectus abdominis myocutaneous (TRAM) free flap. We aimed to develop an easy and simple method to estimate flap volume. Methods We performed a preoperative estimation of the TRAM flap volume in five patients with breast cancer who underwent 2-stage breast reconstruction following an immediate tissue expander operation after a simple mastectomy. We measured the height and width of each flap zone using a ruler and measured the tissue thickness by ultrasound. The volume of each zone, approximated as a triangular or square prism, was then calculated. The zone volumes were summed to obtain the total calculated volume of the TRAM flap. We then determined the width of zone II, so that the calculated flap volume was equal to the required flap volume ($1.2{\times}1.05{\times}$the weight of the resected mastectomy tissue). The TRAM flap was transferred vertically so that zone III was located on the upper side, and zone II was trimmed in the sitting position after vascular anastomosis. We compared the estimated flap width of zone II (=X) with the actual flap width of zone II. Results X was similar to the actual measured width. Accurate volume replacement with the TRAM flap resulted in good symmetry in all cases. Conclusions The volume of a free TRAM flap can be straightforwardly estimated preoperatively using the method presented here, with ultrasound, ruler, and simple calculations, and this technique may help reduced the time required for precise flap tailoring.

Positron Emission Computed Tomographs and Image Reconstruction Methods (PET 장치와 화상 재구성법)

  • Lee, Man-Koo
    • Journal of radiological science and technology
    • /
    • v.22 no.1
    • /
    • pp.5-11
    • /
    • 1999
  • This paper reviews recent major activities on instrumentation and methodology of PET. The performance of the PET instrumentation can be expressed by four physical characteristics, 1) spatial resolution, 2) coincidence resolving time, 3) energy resolution, and 4) detection efficiency. The physical and technical aspects of PET systems are briefly discussed along with these characteristics. Toward high resolution PET the recent trend has been to design multiple rings of densely packed detector arrays with scintillators. In order to satisfy the sampling requirement in reconstruction, continuous detector units has been developed. Iterative image reconstruction algorithms have received considerable attention for improvement of both the sampling requirement and image quality toward the stationary PET. Better resolving time improves the maximum true coincidence rate, which is also increased with more detectors placed in coincidence with each other. It suggests that volume PET is promising for enhancement of detection efficiency. The scattered coincidence event rate may be reduced by using detectors with better energy resolution. The use of interplane septa, however, takes over improvement of energy resolution in 2D PET. Energy resolution becomes an important factor for image quality under the condition of septa removal such as volume PET. Toward full utilization of emitting photons, 3D reconstruction incorporating oblique rays has been studied, and volume reconstruction algorithms have been developed. Practical volume PET systems impose heavy burden not only to detector sets and coincidence circuits, but also to computers in the memory requirements and the data processing. In conclusion, there have been many ingenious methods in development of PET instrumentation, which are based on unique capability of PET. They will be expected to overcome technical limitations, and to approach the fundamental limits.

  • PDF

Three-Dimensional Volume Assessment Accuracy in Computed Tomography Using a Phantom (모형물을 이용한 전산화 단층 촬영에서 3차원적 부피측정의 정확성 평가)

  • Kim, Hyun-Su;Wang, Ji-Hwan;Lim, Il-Hyuk;Park, Ki-Tae;Yeon, Seong-Chan;Lee, Hee-Chun
    • Journal of Veterinary Clinics
    • /
    • v.30 no.4
    • /
    • pp.268-272
    • /
    • 2013
  • The purpose of this study was to assess the effects of reconstruction kernel, and slice thickness on the accuracy of spiral CT-based volume assessment over a range of object sizes typical of synthetic simulated tumor. Spiral CT scanning was performed at various reconstruction kernels (soft tissue, standard, bone), and slice thickness (1, 2, 3 mm) using a phantom made of gelatin and 10 synthetic simulated tumors of different sizes (diameter 3.0-12.0 mm). Three-dimensional volume assessments were obtained using an automated software tool. Results were compared with the reference volume by calculating the percentage error. Statistical analysis was performed using ANOVA and setting statistical significance at P < 0.05. In general, smaller slice thickness and larger sphere diameters produced more accurate volume assessment than larger slice thickness and smaller sphere diameter. The measured volumes were larger than the actual volumes by a common factor depending on slice thickness; in 100HU simulated tumors that had statistically significant, 1 mm slice thickness produced on average 27.41%, 2 mm slice thickness produced 45.61%, 3 mm slice thickness produced 93.36% overestimates of volume. However, there was no statistically significant difference in volume error for spiral CT scans taken with techniques where only reconstruction kernel was changed. These results supported that synthetic simulated tumor size, slice thickness were significant parameters in determining volume measurement errors. For an accurate volumetric measurement of an object, it is critical to select an appropriate slice thickness and to consider the size of an object.

A Comparative Study Between Light Extinction and Direct Sampling Methods for Measuring Volume Fractions of Twin-Hole Sprays Using Tomographic Reconstruction

  • Lee, Choong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1986-1993
    • /
    • 2003
  • The spatially resolved spray volume fractions from both line-of-sight data of direct measuring cells and a laser diffraction particle analyzer (LDPA) are tomographically reconstructed by the Convolution Fourier transformation, respectively. Asymmetric sprays generated from a twin-hole injector are tested with 12 equiangular projections of measurements. For each projection angle, a line-of-sight integrated injection rate was measured using a direct sampling method and also a liquid volume fraction from a set of line-of-sight Fraunhofer diffraction measurements was measured using a light extinction method. Interpolated data between the projection angles effectively increase the number of projections, significantly enhancing the signal-to-noise level in the reconstructed data. The reconstructed volume fractions from the direct sampling cells were used as reference data for evaluating the accuracy of the volume fractions from the LDPA.

The study of the stereo X-ray system for automated X-ray inspection system using 3D-reconstruction shape information (3차원 형상복원 정보 기반의 검색 자동화를 위한 스테레오 X-선 검색장치에 관한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2043-2050
    • /
    • 2014
  • As most the scanning systems developed until now provide radiation scan plane images of the inspected objects, there has been a limitation in judging exactly the shape of the objects inside a logistics container exactly with only 2-D radiation image information. As a radiation image is just the density information of the scanned object, the direct application of general stereo image processing techniques is inefficient. So we propose that a new volume-based 3-D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for X-ray inspection. For validation of the proposed shape reconstruction algorithm using volume, 15 samples were scanned and reconstructed to restore the shape using an X-ray stereo inspection system. Reconstruction results of the objects show a high degree of accuracy compared to the width (2.56%), height (6.15%) and depth (7.12%) of the measured value for a real object respectively. In addition, using a K-Mean clustering algorithm a detection efficiency of 97% is achieved. The results of the reconstructed shape information using the volume based shape reconstruction algorithm provide the depth information of the inspected object with stereo X-ray inspection. Depth information used as an identifier for an automated search is possible and additional studies will proceed to retrieve an X-ray inspection system that can greatly improve the efficiency of an inspection.

A Image-based 3-D Shape Reconstruction using Pyramidal Volume Intersection (피라미드 볼륨 교차기법을 이용한 영상기반의 3차원 형상 복원)

  • Lee Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.127-135
    • /
    • 2006
  • The image-based 3D modeling is the technique of generating a 3D graphic model from images acquired using cameras. It is being researched as an alternative technique for the expensive 3D scanner. In this paper, I propose the image-based 3D modeling system using calibrated camera. The proposed algorithm for rendering 3D model is consisted of three steps, camera calibration, 3D shape reconstruction and 3D surface generation step. In the camera calibration step, I estimate the camera matrix for the image aquisition camera. In the 3D shape reconstruction step, I calculate 3D volume data from silhouette using pyramidal volume intersection. In the 3D surface generation step, the reconstructed volume data is converted to 3D mesh surface. As shown the result, I generated relatively accurate 3D model.