• Title/Summary/Keyword: Volume of fluid method

Search Result 651, Processing Time 0.024 seconds

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.5-13
    • /
    • 2007
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925. Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower one and the motion of grout is also a function of formation permeability. Viscosity of pout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this paper, characteristics of new cement grout material that has been developed recently are studied: injectable volume of new grout material is tested in two different grain sizes of sands; and the method to calculate injectable volume of grout Is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to increase as an exponential function of time. And lumped parameter $\delta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressures. Injection test results show that grout penetration rate is decreased by the increase of grout viscosity and clogging phenomena.

A Study on the Electroplating using Macroemulsion in High Pressure (고압 매크로에멀젼을 이용한 전해도금에 관한 연구)

  • Park, Ji-Young;Yang, Jun Youl;Suh, Dong Jin;Yoo, Ki-Pung;Lim, Jong Sung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.53-59
    • /
    • 2005
  • In this study, the supercritical electroplating was investigated by forming macroemulsion of electroplating solution using surfactant in supercritical $CO_2$. The fluorinated analogous AOT surfactant, sodium salt of bis (2,2,3,3,4,4,5,5-octafluoro-1-pentanol) sulfosuccinate which has both '$CO_2$ philic' chains and 'hydrophilic' head group was used as a surfactant, and Ni plate and Cu plate were used as the anode and the cathode, respectively. Electroplating was carried out in the conventional method and the supercritical macroemulsion and both results were compared. The supercritical electroplating was carried out in various concentration of surfactant such as 2, 4, 7 wt%, the volume ratio of Ni-plating solution to $CO_2$ was varied in the range of 10-70 vol%, and propane was used as a supercritical fluid instead of $CO_2$. According to the experimental results, the plated surface of Ni on Cu plate performed in supercritical macroemulsion was better than that, in conventional state. In the image of Ni surface plated on Cu plate in supercritical state, there were fewer pin-holes and pits comparing with that in the conventional process. The current and conductivity was increased as the volume ratio of Ni-plating solution to $CO_2$ was increased and the current and the amount of Ni plated on Cu plate were decreased as the concentration of surfactant become higher. In addition, in case of the continuous phase, using $CO_2$ was more effective than using $CO_2$.

Blood Loss Prediction of Rats in Hemorrhagic Shock Using a Linear Regression Model (출혈성 쇼크를 일으킨 흰쥐에서 선형회귀 분석모델을 이용한 출혈량 추정)

  • Lee, Tak-Hyung;Lee, Ju-Hyung;Choi, Jae-Rim;Yang, Dong-In;Kim, Deok-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.56-61
    • /
    • 2010
  • Hemorrhagic shock is a common cause of death in the emergency department. The purpose of this study was to investigate the relationship between blood loss as a percent of the total estimated blood volume (% blood loss) and changes in several physiological parameters. The other goal was to achieve an accurate prediction of percent blood loss for hemorrhagic shock in rats using a linear regression model. We allocated 60 Sprague-Dawley rats into four groups: 0ml, 2ml, 2.5ml, 3 mL/100 g during 15 min. We analyzed the heart rate, systolic and diastolic blood pressure, respiration rate, and body temperature in relation to the percent blood loss. We generated a linear regression model predicting the percent blood loss using a randomly chosen 360 data set and the R-square value of the model was 0.80. Root mean square error of the tested 360 data set using the linear regression was 5.7%. Even though the linear regression model is not directly applicable to clinical situation, our method of predicting % blood loss could be helpful in determining the necessary fluid volume for resuscitation in the future.

An Experimental Study on Electrical Energy Generation Based on Phase Change Materials for Application of Underwater Unmanned Vehicles (수중 무인 이동체 적용을 위한 상변화물질 기반의 전기 에너지 생성에 대한 실험적 연구)

  • Yeon-Chul Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.228-233
    • /
    • 2022
  • This study is an experimental study on how to use phase change materials(PCM) to generate electrical energy for long-term operation of underwater unmanned vehicles. The electrical energy generation method is a volume change and a pressure change that occur as a phase change material changes to a solid or liquid state according to temperature, and the change in pressure creates a flow of fluid to create electrical energy. Polyethylene glycol was used as a phase change material considering the temperature of the ocean. In addition, an electrical energy generating device that converts volume change into pressure at low temperature (1℃~2℃) in solid state and high temperature (21℃~25℃) in liquid state was fabricated. As a result of the experiment, the pressure change according to the phase change rapidly changed between 1 hour and 2 hours, and maintained a pressure of about 24MPa after 4 hours. Through this, it was confirmed that it can be used as a power source for underwater unmanned vehicles using phase change materials and temperature differences. In addition, it was found that a more improved design should be made in order to apply the phase change material to an underwater unmanned vehicle.

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations (현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석)

  • Hyunjeong Jeon;Hyung Chul Shin;Tae Kwon Yun;Weon Shik Han;Jaehoon Jeong;Jaehwii Gwag
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.

CFD analysis for effects of the crucible geometry on melt convection and growth behavior during sapphire single crystal growth by Kyropoulos process (사파이어 단결정의 Kyropoulos 성장시 도가니 형상에 따른 유동장 및 결정성장 거동의 CFD 해석)

  • Ryu, J.H.;Lee, W.J.;Lee, Y.C.;Jo, H.H.;Park, Y.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.115-121
    • /
    • 2012
  • Sapphire single crystals have been highlighted for epitaxial gallium nitride films in high-power laser and light emitting diode (LED) industries. Among the many crystal growth methods, the Kyropoulos process is an excellent commercial method for growing larger, high-optical-quality sapphire crystals with fewer defects. Because the properties and growth behavior of sapphire crystals are influenced largely by the temperature distribution and convection of molten sapphire during the manufacturing process, accurate predictions of the thermal fields and melt flow behavior are essential to design and optimize the Kyropoulos crystal growth process. In this study, computational fluid dynamic simulations were performed to examine the effects of the crucible geometry aspect ratio on melt convection during Kyropoulos sapphire crystal growth. The results through the evolution of various growth parameters on the temperature and velocity fields and convexity of the crystallization interface based on finite volume element simulations show that lower aspect ratio of the crucible geometry can be helpful for the quality of sapphire single crystal.

Formation Estimation of Shaly Sandstone Reservoir using Joint Inversion from Well Logging Data (복합역산을 이용한 물리검층자료로부터의 셰일성 사암 저류층의 지층 평가)

  • Choi, Yeonjin;Chung, Woo-Keen;Ha, Jiho;Shin, Sung-ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Well logging technologies are used to measure the physical properties of reservoirs through boreholes. These technologies have been utilized to understand reservoir characteristics, such as porosity, fluid saturation, etc., using equations based on rock physics models. The analysis of well logs is performed by selecting a reliable rock physics model adequate for reservoir conditions or characteristics, comparing the results using the Archie's equation or simandoux method, and determining the most feasible reservoir properties. In this study, we developed a joint inversion algorithm to estimate physical properties in shaly sandstone reservoirs based on the pre-existing algorithm for sandstone reservoirs. For this purpose, we proposed a rock physics model with respect to shale volume, constructed the Jacobian matrix, and performed the sensitivity analysis for understanding the relationship between well-logging data and rock properties. The joint inversion algorithm was implemented by adopting the least-squares method using probabilistic approach. The developed algorithm was applied to the well-logging data obtained from the Colony gas sandstone reservoir. The results were compared with the simandox method and the joint inversion algorithms of sand stone reservoirs.

A Study on a Method for Composing a Portfolio for REITs Investment Using Markowitz's Portfolio Model (마코위츠 포트폴리오 모형을 사용한 리츠 투자 포트폴리오 구성방법에 관한 연구)

  • Lee, Chi-Joo;Lee, Ghang;Won, Jong-Sung;Ham, Sung-Ili
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.2
    • /
    • pp.54-63
    • /
    • 2010
  • Domestic construction companies suffer from the difficulty in financing in the wake of economic slump at home and abroad. In the periods of this economic slump, which hit the nation REITs, the facilitator of fluid financing and the stimulating of construction economic, has increasingly been expanded since its introduction in 2001. But, REITs relatively falls behinds any other nations, in terms of its growth speed and marketing volume. The purpose of this research thesis is to suggest the method for composing a portfolio using Markowitz portfolio selection models for stimulating REITs. Main contents are as follows. First, the thesis made the comparative analysis on profit increase in REITs investment in application of models by Markowitz and REITs derivatives from 2007/07/03 to 2008/07/21 during investment analysis periods. The result showed that total profits by Markowitz model amounted to about 10 percent higher than average profits of REITs derivatives. Second, this thesis made the analysis on sensitivity of data-gathering and portfolio change periods of the existing profits, in order to measure the both periods and yield optimum profits. The six month data-collecting periods of profits accounted for some 16% higher profits than profits of REITs derivatives. In case when the two week periods of portfolio change accounted for some 11% higher profits than profits of REITs derivatives.

Effect of Wind Speed Profile on Wind Loads of a Fishing Boat (풍속 분포곡선이 어선의 풍하중에 미치는 영향에 관한 연구)

  • Lee, Sang-Eui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.922-930
    • /
    • 2020
  • Marine accidents involving fishing boats, caused by a loss of stability, have been increasing over the last decade. One of the main reasons for these accidents is a sudden wind attacks. In this regard, the wind loads acting on the ship hull need to be estimated accurately for safety assessments of the motion and maneuverability of the ship. Therefore, this study aims to develop a computational model for the inlet boundary condition and to numerically estimate the wind load acting on a fishing boat. In particular, wind loads acting on a fishing boat at the wind speed profile boundary condition were compared with the numerical results obtained under uniform wind speed. The wind loads were estimated at intervals of 15° over the range of 0° to 180°, and i.e., a total of 13 cases. Furthermore, a numerical mesh model was developed based on the results of the mesh dependency test. The numerical analysis was performed using the RANS-based commercial solver STAR-CCM+ (ver. 13.06) with the k-ω turbulent model in the steady state. The wind loads for surge, sway, and heave motions were reduced by 39.5 %, 41.6 %, and 46.1 % and roll, pitch, and yaw motions were 48.2 %, 50.6 %, and 36.5 %, respectively, as compared with the values under uniform wind speed. It was confirmed that the developed inlet boundary condition describing the wind speed gradient with respect to height features higher accuracy than the boundary condition of uniform wind speed. The insights obtained in this study can be useful for the development of a numerical computation method for ships.

Characteristics of Water Level and Velocity Changes due to the Propagation of Bore (단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구)

  • Lee, Kwang Ho;Kim, Do Sam;Yeh, Harry
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.575-589
    • /
    • 2008
  • In the present work, we investigate the hydrodynamic behavior of a turbulent bore, such as tsunami bore and tidal bore, generated by the removal of a gate with water impounded on one side. The bore generation system is similar to that used in a general dam-break problem. In order to the numerical simulation of the formation and propagation of a bore, we consider the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface tracking between two fluids is achieved by the volume-of-fluid (VOF) technique and the M-type cubic interpolated propagation (MCIP) scheme is used to solve the Navier-Stokes equations. The MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. Further, large eddy simulation (LES) closure scheme, a cost-effective approach to turbulence simulation, is used to predict the evolution of quantities associated with turbulence. In order to verify the applicability of the developed numerical model to the bore simulation, laboratory experiments are performed in a wave tank. Comparisons are made between the numerical results by the present model and the experimental data and good agreement is achieved.