• Title/Summary/Keyword: Volume of fluid method

Search Result 652, Processing Time 0.031 seconds

A Study on the impact and solidification of the liquid metal droplet in the thermal spray deposition (용사 공정에서 용융 금속 액적의 충돌현상과 응고 과정 해석)

  • Ha, Eung-Ji;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.214-219
    • /
    • 2001
  • In this study, numerical investigation has been performed on the spreading and solidification of a droplet impacting onto a solid substrate in the thermal spray process. The finite difference method with volume-of-fluid approach is used to analyze the free surface flow and the source-based enthalpy method is employed to model the latent heat release during the solidification. In this work, the numerical model is validated through the comparison of the present numerical result with experimental data available for the flat substrate.

  • PDF

Heat Transfer Analysis of Exhaust Gas into the Passenger Car Muffler (승용차 머플러에 유입되는 배기가스의 열전달 해석)

  • Lee, Chung-Seub;Shin, Jae-Ho;Lee, Hae-Jong;Suh, Jeong-Se;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.157-162
    • /
    • 2003
  • This study is analysis on the heat transfer of exhaust gas into the muffler at passenger Car. Numerical analysis with Computational fluid Dynamics(CFD) was carried out to investigate exhaust gas flow. The STAR-CD S/W used for the three dimensional steady state CFD analysis in a muffler. The Navier-Stokes Equation is solved with the SIMPLE method in a general cartesian coordinates system. Result of numerical simulation; Inlet and outlet temperature shown about ${\Delta}T=239K$, 216K, 202K at in the muffler. Heat transfer was progressed quickly by atmospheric temperature of muffler external at in the near wall.

  • PDF

Numerical Simulation of friction Stir Spot Welding Process with AA5083-H18 (AA5083-H18 판재의 마찰 교반 점 용접 공정에 대한 전산 해석)

  • Kim, Don-Gun;Badarinarayan, Harsha;Ryu, Ill;Kim, Ji-Hoon;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, Kwan-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.458-461
    • /
    • 2009
  • Thermo-mechanical simulation of the Friction Stir Spot Welding (FSSW) processes was performed for the AA5083-H18 sheets, utilizing commercial Finite Element Method (FEM) and Finite Volume Method (FVM) which are based on Lagrangian and Eulerian formulations, respectively. The Lagrangian explicit dynamic FEM code, PAM-CRASH, and the Eulerian Computational Fluid Dynamics (CFD) FVM code, STAR-CD, were utilized to understand the effect of pin geometry on weld strength and material flow under the unsteady state condition. Using FVM code, material flow pattern near the tool boundary was analyzed to explain the weld strength difference between the weld by cylindrical pin and the weld by triangular pin, while the frictional energy concept using the FEM code had limitation to explain the weld strength difference.

  • PDF

Correlation between Welding Parameters and Detaching Drop Size using Regression (회귀 분석을 이용한 용접 변수와 이탈 액적 크기의 상호 관계)

  • 최상균;한창우;이상룡;이영문
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.83-90
    • /
    • 2002
  • Metal Transfer in gas metal arc (GMA) welding is a complex phenomenon affected by many parameters of the welding conditions and material properties. In this research, the correlation equation between the welding condition and detaching droplet size and detaching velocity in GMA welding was studied via recession analysis on the results of numerical analysis using the volume-of-fluid (VOF) method. Welding parameters and material properties were grouped into three dimensionless numbers and detaching droplet size was expressed as the function of them. Second order and exponential multi-variable correlation forms were assumed, and the coefficients of these equations were calculated for globular and spray modes as well as entire transfer modes. Applying correlation equation into available experimental data, it shows good agreement.

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.

Design of An Axial Flow Fan with Shape Optimization (형상최적화를 통한 축류송풍기의 설계)

  • Seo, Seoung-Jin;Choi, Seung-Man;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.578-582
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes Analysis to optimize the shape of a axial flow fan. Reynolds-averaged Navier-Stokes equations with k-$\epsilon$ turbulence model are discretized with finite volume approximations. Regression analysis is used for generating response surface, and it is validated by ANOVA. Five geometric variables, i.e., distribution of sweep angle at mean and tip, lean angle at mean and tip, and spanwise location of mean were employed to optimize the efficiency. The computational results are compared with experiment data. As a main result of the optimization, the efficiency was successfully improved.

  • PDF

STUDY ON HIGH RESOLUTION SCHEMES IN INTERFACE CAPTURING METHODS WITH UNSTRUCTURED GRIDS (비정렬격자계를 사용하는 경계면포착법에서 HR도식에 관한 연구)

  • Kim, J.E.;Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.51-56
    • /
    • 2006
  • Several high resolution schemes such as OSHER, MUSCL, SMART, GAMMA, WACEB and CUBISTA are applied to two typical test cases of a translation test and a collapsing water column problem for the accurate capturing of fluid interfaces. It is accomplished by implementing the high resolution schemes in the in-house CFD code(PowerCFD) for computing 3-D flow with an unstructured cell-centered method, which is based on the finite-volume technique and fully conservative. The calculated results are found to show that SMART scheme gives the best performance with respect to accuracy and robustness.

  • PDF

A Comparative Study of Interface Reconstruction Algorithms in The Molten Metal Flow (주조유동 시뮬레이션에서 자유경계면 추적 기법 비교 연구)

  • Choi, Young-Sim;Hong, Jun-Ho;Hwang, Ho-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.124-129
    • /
    • 2011
  • We applied two numerical schemes to improve accuracy of the solution in the flow simulation of molten metal. One method is Piecewise Linear Interface Calculation (PLIC) method and the other is Donor-Acceptor (D-A) method. In the present work, we have tested simple problems to verify the module of the interface reconstruction algorithms. After validations, accuracy and efficiency of these two methods have compared by simulating various real products. On the numerical simulation of free surface flow, it is possible for PLIC method to track very accurately the interface between phases. PLIC method, however, has the weak point where a lot of computational time hangs, though it shows the more accurate interface reconstruction. Donor-Acceptor method has enough effectiveness in the macro observation of mold filling sequence though it shows the inferior accuracy.

Numerical Analysis Method for the Flow Analysis in the Engine Cylinder (엔진실린더내의 유동해석을 위한 수치해석방법)

  • Choi J. W.;Lee Y. H.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • In general, FDM(finite difference method) and FVM(finite volume method) are used for analyzing the fluid flow numerically. However it is difficult to apply them to problems involving complex geometries, multi-connected domains, and complex boundary conditions. On the contrary, FEM(finite element method) with coordinates transformation for the unstructured grid is effective for the complex geometries. Most of previous studies have used commercial codes such as KIVA or STAR-CD for the flow analyses in the engine cylinder, and these codes are mostly based on the FVM. In the present study, using the FEM for three-dimensional, unsteady, and incompressible Navier-Stokes equation, the velocity and pressure fields in the engine cylinder have been numerically analyzed. As a numerical algorithm, 4-step time-splitting method is used and ALE(arbitrary Lagrangian Eulerian) method is adopted for moving grids. In the Piston-Cylinder, the calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

Effects of the Water Quality on the Dispersion Properties of Bentonites Used for Drilling Fluid (시추이수용 벤토나이트의 분산 특성에 미치는 수질의 영향)

  • Akther, Shamima;Hwang, Jin-Yeon;Lee, Hyo-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.21-33
    • /
    • 2007
  • The dispersion/flocculation behavior of bentonite is a major concern in performance of drilling fluid. We studied the dispersion/flocculation characteristics of three commercial bentonites [two CMC (carboxymethyl cellulose) treated and one untreated] in waters of different pHs and salt concentrations. We also examined changes in the viscosity of bentonite suspensions in such waters as a major rheological property of drilling fluid. The dispersion/flocculation behaviors of bentonites were measured by two methods: colorimetric and light scattering method. Light scattering method allows estimating the floc diameter and flocculation rate. The dispersion and flocculation behaviors were diverse with the different bentonites and water qualities. In distilled water, all the bentonites were well dispersed up to first 10 minutes. After that, the CMC-bearing bentonites were flocculated. In salt waters, all the samples were flocculated and the flocculation rate is varied with salt concentration and polymer content. The volume of settled flocs decreased with increasing salt concentration. The flocculation rate and floc diameter increased with decreasing pH of solutions, whereas the volume of settled flocs increased with increasing pH of solutions. The bentonites of fast flocculation behavior had low viscosity. The results of the present study will be helpful in applying bentonites to drilling fluids in diverse environments.