• Title/Summary/Keyword: Volume of Fluid

Search Result 1,422, Processing Time 0.024 seconds

The Effect of Sodium Chloride on the Quality of Cheese and Upcoming Technologies for Manufacturing Reduced-Sodium Cheeses: A Review (Sodium Chloride가 치즈의 품질에 미치는 영향과 저염치즈 개발 기술: 총설)

  • Chon, Jung-Whan;Kim, Hyun-Sook;Kim, Dong-Hyeon;Kim, Hong-Seok;Song, Kwang-Young;Jeong, Dong-Gwan;Kim, Soo-Ki;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.47-57
    • /
    • 2015
  • Sodium is an essential nutrient with very important functions, including regulation of the extracellular fluid volume and active transport of molecules across the cell membranes. Since high levels of dietary sodium are associated with a high prevalence of hypertension, prehypertension, and other adverse effects on health, many national and international health organizations (WHO, FAO, etc.) recommend that sodium intake should be significantly decreased. In developed nations, cheese products, from among many processed foods, can cause high salt intake. Hence, there is an urgent need to reduce the content of salt in cheese processing, using various substitutes of sodium chloride (NaCl). In general, salt (NaCl) has been used as a food preservative to limit and (or) kill the growth of foodborne pathogens and spoilage organisms by decreasing the water activity, and to improve texture and flavor. To maintain public health, the salt content in cheese should be decreased without influencing the physicochemical properties of cheese. Therefore, the objective of this review is to outline the upcoming technologies used to reduce the salt content in different types of cheese using various substitutes.

  • PDF

Analysis of the mixing effect of the confluence by the difference in water temperature between the main stream and the tributary (본류와 지류의 수온 차에 의한 합류부 혼합 양상 분석)

  • Ahn, Seol Ha;Lee, Chang Hyun;Kim, Kyung Dong;Kim, Dong Su;Ryu, Si Wan;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.103-113
    • /
    • 2023
  • The river confluence is a section in which two rivers with different topographical and hyrodynamic characteristics are combined into one, and it is a section in which rapid flow, inflow of sediments, and hydrological topographic changes occur. In the confluence section, the flow of fluid occurs due to the difference in density due to the type of material or temperature difference, which is called a density flow. It is necessary to accurately measure and observe the confluence section including a certain section of the main stream and tributaries in order to understand the mixing behavior of the water body caused by the density difference. A comprehensive analysis of this water mixture can be obtained by obtaining flow field and flow rate information, but there is a limit to understanding the mixing of water bodies with different physical properties and water quality characteristics of rivers flowing with stratigraphic flow. Therefore, this study attempts to grasp the density flow through the water temperature distribution in the confluence section. Among the extensive data of the river, vertical data and water surface data were acquired, and through this, the stratification phenomenon of the confluence was to be confirmed. It was intended to analyze the mixed pattern of the confluence by analyzing the water mixing pattern according to the water temperature difference using the vertical data obtained by measuring the repair volume by installing the ADCP on the side of the boat and measuring the real-time concentration using YSI. This study can supplement the analysis results of the existing water quality measurement in two dimensions. Based on the comparative analysis, it will be used to investigate the current status of stratified sections in the water layer and identify the mixing characteristics of the downstream section of the river.

Aquaporin in bleomycin induced lung injury (급성 폐손상 동물모델에서 aquaporin 수분통로의 발현)

  • Jang, An-Soo;Park, Jong-Sook;Lee, June-Hyuk;Park, Sung-Woo;Kim, Do-Jin;Uh, Soo-Taek;Kim, Yong-Hoon;Park, Choon-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.3
    • /
    • pp.330-336
    • /
    • 2006
  • Background : Aquaporins (AQPs) may play a role in the pathogenesis of pulmonary inflammation and edema. This study investigated the role ofAQPs in acute lung injury following bleomycin inhalation in rats. Methods : Sprague-Dawley rats were treated via inhalation with 10 U/kg bleomycin hydrochloride dissolved in 5 ml of normal saline. The control rats were treated with 5 ml normal saline. The animals (n = 6-8 rats per group) were sacrificed at 4, 7, and 14 d. The changes in AQP1, AQP4, and AQP5 expression levels over time were analyzed by Western blotting. The nitrate and nitrite concentrations in the bronchoalveolar lavage fluid (BALF) were measured using a modified Griess reaction. ELISA was used to check cytokines. Results : The respiration rates were significantly higher 4 and 7 days after the bleomycin treatment compared with those of the control rats. The tidal volume was lower in rats at 4 days after the bleomycin treatment, and the wet/dry weights of the lung were significantly higher than those of the control group. The nitrite and nitrate concentrations in the BALF from the rats at 4 days after exposure to bleomycin were greater than those from the saline-treated rats. Immunoblotting studies demonstrated that the AQP1 and AQP4 expression levels were lower in the rats at 4 days. However, the AQP4 expression level was higher at 7 days. The AQP5 expression level increased at 4, 7 and 14 days after the bleomycin treatment. Conclusion : This study demonstrates that AQPs are expressed differently in bleomycin-induced pulmonary edema.

Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus (VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In medical imaging, three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format can give intuitive information more efficiently on the World Wide Web (WWW). The web-based 3D visualization of functional images combined with anatomical images has not studied much in systematic ways. The goal of this study was to achieve a simultaneous observation of 3D anatomic and functional models with planar images on the WWW, providing their locational information in 3D space with a measuring implement using VRML. MRI and ictal-interictal SPECT images were obtained from one epileptic patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was performed to improve identification of a seizure focus. SISCOM image volumes were held by thresholds above one standard deviation (1-SD) and two standard deviations (2-SD). SISCOM foci and boundaries of gray matter, white matter, and cerebrospinal fluid (CSF) in the MRI volume were segmented and rendered to VRML polygonal surfaces by marching cube algorithm. Line profiles of x and y-axis that represent real lengths on an image were acquired and their maximum lengths were the same as 211.67 mm. The real size vs. the rendered VRML surface size was approximately the ratio of 1 to 605.9. A VRML measuring tool was made and merged with previous VRML surfaces. User interface tools were embedded with Java Script routines to display MRI planar images as cross sections of 3D surface models and to set transparencies of 3D surface models. When transparencies of 3D surface models were properly controlled, a fused display of the brain geometry with 3D distributions of focal activated regions provided intuitively spatial correlations among three 3D surface models. The epileptic seizure focus was in the right temporal lobe of the brain. The real position of the seizure focus could be verified by the VRML measuring tool and the anatomy corresponding to the seizure focus could be confirmed by MRI planar images crossing 3D surface models. The VRML application developed in this study may have several advantages. Firstly, 3D fused display and control of anatomic and functional image were achieved on the m. Secondly, the vector analysis of a 3D surface model was defined by the VRML measuring tool based on the real size. Finally, the anatomy corresponding to the seizure focus was intuitively detected by correlations with MRI images. Our web based visualization of 3-D fusion image and its localization will be a help to online research and education in diagnostic radiology, therapeutic radiology, and surgery applications.

  • PDF

Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations (지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.

Effect of Modified Ultrafiltration on the Postoperative State after Pediatric Open Heart Surgery. (소아 개심술에 있어서 변형 초여과법(Modified Ultrafiltration)이 술후 상태에 미치는 영향)

  • 방종경;천종록;김규태
    • Journal of Chest Surgery
    • /
    • v.31 no.5
    • /
    • pp.456-465
    • /
    • 1998
  • Cardiopulmonary bypass(CPB) in children is associated with the accumulation of body water after cardiac operation, as a consequence of an inflammatory capillary leak. Following work by Elliott in 1991, modified ultrafiltration(MUF) was introduced after bypass as a means of hemoconcentrating patients and a potential way of removing water from the tissues. We have carried out a prospective randomized study of 20 children undergoing open heart surgery, comparing MUF with nonfiltered controls. MUF was carried out for a mean of 18.9 minutes after completion of CPB to a hematocrit of 37.1%(mean). The mean water volulme removed by the ultrafiltration was 38.4 ml/kg and the mean blood volume retransfused from the oxygenator during the ultrafiltration was 32.1 ml/kg. Fluid balance, hemodynamics, hematocrit, osmolarity and dosage of drug treatment were recorded for 4∼12 hours postoperatively. The results were analyzed using Student t-test and ANOVA, comparing controls(n=10) to MUF(n=10). Blood loss(ml/kg/24hr) was 14.5(mean) in MUF versus 13.7 in controls; blood transfused(ml/kg/24hr) 6.6 in MUF versus 15.2 in controls; plasma transfused(ml/kg/24hr) 65.7 in MUF versus 59.6 in controls. There was rise in arterial blood pressure and hematocrit during MUF. Percent rise of systolic blood pressure was 28.8% in MUF versus 18.7% in controls(p=0.366); percent rise of diastolic blood pressure was 28.8% in MUF versus 8.5% in controls(p=0.135); and percent rise of mean blood pressure was 36.2% in MUF versus 8.2% in controls (p=0.086). Percent rise of hematocrit was 40.0% in MUF versus 23.5% in controls(p=0.002). There was no significant difference in the inotropic requirement and the postoperative serum osmolarity between two groups. The number of days on the ventilator, the duration of stay in the intensive care unit, and the postoperative hospital stay were not significantly different between the two groups.

  • PDF

Biokinetics of Carbohydrate and Lipid Metabolism in Normal Laying Hen [Part 1] -Determination of Turnover of Glucose- (정상산란계(正常産卵鷄)에 있어서 탄수화물(炭水化物)과 지질대사(脂質代謝)의 생동역학(生動力學) 제1보[第一報] -포도당 대사회전(代謝回轉)의 측정(測定)-)

  • Chiang, Y.H.;Riis, P.M.
    • Applied Biological Chemistry
    • /
    • v.20 no.2
    • /
    • pp.205-209
    • /
    • 1977
  • The pool size of plasma glucose, turnover rate and other concerned items for glucose metabolism in normal laying hen were investigated by a single-injection method using $U-C^{14}-glucose$. The 11.6 nCi of pure dose was injected to a hen normally fed through the wing vein. The glucose concentration in plasma sample taken at 5 minutes after injections was 214mgper 100ml. From the plottings of logarithmic standard specific activities of plasma taken from 5 to 120 minutes against the time after injection and from the regresion analysis, metabolic states were determined. The pool size was 1.07g, turnover rate was 0.024 per minute, turnover time was 41 minutes, utilization rate was 26mg/min. (0.83 g/hr/kg B.W. 3/4) and glucose space(extracellular fluid volume) was 25.3 per cent of body weight. The values obtained from. 10-50 minutes samples were similar to those described above, which we from 5-120 minutes samples.

  • PDF

Characterization of the Stretch-Activated Channel in the Hamster Oocyte (햄스터난자에서 신전에 의해 활성화되는 통로의 성상)

  • Kim, Y.-M.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • Stretch-activated channels (SACs) responds to membrane stress with changes in open probability (Po). They play essential roles in regulation of cell volume and differentiation, vascular tone, and in hormonal secretion. SACs highly present in Xenopus oocytes and Ascidian oocytes are suggested to be involved in the regulation of pH and fluid transport to balance the osmotic pressure, but remain unclear in mammanlian oocytes. This study was investigated to find the presence of SACs in hamster oocytes and to examine their electrophysiological properties. To infer a role of SAC in relation to the development of early stage, we followed up to the stage of two-cell zygote with patch clamp techniques. Single channels were elicited by negative pressure (lower than ­15 cm$H_2O$). Interestingly, SACs were dependent on permeable cations such as $Na^+$ or $K^+$. As permeable cation removed from both sides across the membrane, SAC activity completely disappeared. When permeable cations present only in intracellular compartment, outward currents appeared at positive potentials. In contrast to this, inward currents occurred only at the negative voltage when permeable cation absent in cell interior. These result suggests that SAC carry cations through the nonselective cation channel (NSC channel). Taken together, we found that stretch activated channels present in hamster oocyte and the channel may carry cations through NSC channels. This stretch activated-NSC channels may play physiological role(s) in oocyte growth, maturation, fertilization and embryogenesis in fertilized oocytes to two-cell zygotes of hamster.

Development of 3D Printed Snack-dish for the Elderly with Dementia (3D 프린팅 기술을 활용한 치매노인 전용 영양(수분)보충 식품섭취용기 개발)

  • Lee, Ji-Yeon;Kim, Cheol-Ho;Kim, Kug-Weon;Lee, Kyong-Ae;Koh, Kwangoh;Kim, Hee-Seon
    • Korean Journal of Community Nutrition
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2021
  • Objectives: This study was conducted to create a 3D printable snack dish model for the elderly with low food or fluid intake along with barriers towards eating. Methods: The decision was made by the hybrid-brainstorming method for creating the 3D model. Experts were assigned based on their professional areas such as clinical nutrition, food hygiene and chemical safety for the creation process. After serial feedback processes, the grape shape was suggested as the final model. After various concept sketching and making clay models, 3D-printing technology was applied to produce a prototype. Results: 3D design modeling process was conducted by SolidWorks program. After considering Dietary reference intakes for Koreans (KDRIs) and other survey data, appropriate supplementary water serving volume was decided as 285 mL which meets 30% of Adequate intake. To consider printing output conditions, this model has six grapes in one bunch with a safety lid. The FDM printer and PLA filaments were used for food hygiene and safety. To stimulate cognitive functions and interests of eating, numbers one to six was engraved on the lid of the final 3D model. Conclusions: The newly-developed 3D model was designed to increase intakes of nutrients and water in the elderly with dementia during snack time. Since dementia patients often forget to eat, engraving numbers on the grapes was conducted to stimulate cognitive function related to the swallowing and chewing process. We suggest that investigations on the types of foods or fluids are needed in the developed 3D model snack dish for future studies.

Teleseismic Travel Time Tomography for the Mantle Velocity Structure Beneath the Melanesian Region (원거리 지진 주시 토모그래피를 이용한 멜라네시아 지역의 맨틀 속도 구조 연구)

  • Jae-Hyung Lee;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • The Melanesian region in the western Pacific is dominated by complex plate tectonics, with the largest oceanic plateau, the OntongJava plateau, and a hotspot, the Caroline Islands. To better understand the complex geodynamics of the region, we estimate P- and S-velocity models and 𝛿 (VP/VS) model by using relative teleseismic travel times measured at seismometers on land and the seafloor. Our results show high-velocity anomalies in the subduction zones of the Melanesian region to a depth of about 400 km, which is thought to be subducting Solomon Sea, Bismarck, and Australian plates along plate boundaries. Along subduction zones, positive 𝛿 (VP/VS) anomalies are found, which may be caused by partial melting due to dehydration. A broad high-velocity anomaly is observed at 600 km depth below the Ontong-Java plateau, with a negative 𝛿 (VP/VS) anomaly. This is thought to be a viscous and dry remnant of the Pacific plate that subducted at 45-25 Ma, with a low volume of fluids due to dehydration for a long period in the mantle transition zone. Beneath the Caroline Islands, a strong low-velocity anomaly is obseved to a depth of 800 km and appears to be connected to the underside of the remnant Pacific plate in the mantle transition zone. This suggests that the mantle plume originating in the lower mantle has been redirected due to the interaction with the remnant Pacific plate and has reached its current location. The mantle plume also has a positive 𝛿 (VP/VS) anomaly, which is thought to be due to the influence of embedded fluids or partial melting. A high-velocity anomaly, interpreted as an effect of the thick lithosphere beneath the Ontong-Java plateau, is observed down to 300 km depth with a negative 𝛿 (VP/VS) anomaly, which likely indicate that little fluid remains in the melt residue accumulated in the lithosphere.