• Title/Summary/Keyword: Volume model

Search Result 4,949, Processing Time 0.03 seconds

Accident Models of Rotary by Age Group in Korea (국내 로터리의 연령대별 사고모형)

  • Park, Min Kyu;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.121-129
    • /
    • 2013
  • PURPOSES : This study deals with the traffic accidents of rotary in Korea. The objective of this study is to develop the accident models by age group based on the various data of rotaries. METHODS : In pursuing the above, this study gives particular attentions to classifying the accident data of 17 rotaries by age, collecting the data of geometric structure, traffic volume and others, and developing the models using SPSS 17.0 and EXCEL. RESULTS : First, 3 multiple linear regression models which were all statistically significant were developed. The value of model of under 30-49 age group were, however, evaluated to be 0.688 and be less than those of other models. Second, the most powerful variables were analyzed to be traffic volume in the model of under 30 age group, circulatory roadway width in the model of 30-49 age group, and the number of approach lane in the model of above 50 age group. Finally, the test results of accident models using RMSE were all evaluated to be fitted to the given data. CONCLUSIONS : This study propose install streetlights, speed humps and widen Circulatory as effective improvements for reduction of accident in rotary.

A Study on Injection Rate Characteristics of a Diesel Injector (디젤 인젝터의 분사율 특성에 관한 연구)

  • Chung, Jaewoo;Kim, Namho;Lim, Chanhyun;Kim, Dugjin
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.217-222
    • /
    • 2015
  • In this study, Injection rate tests of a Diesel common-rail injector have been performed with injection volume measurement type injection rate test system EMI21 for construction of injector model can be used in an engine calibration mean valued model. The measuring principle of the test system is based on measurement of dispalcement of a movable measurement piston by the volume of fluid released by the injector. From these injection rate test results, the characteristics on shape of instantaneous injection rate and injection fuel amount have been investigated and injection fuel amount calculation equation based on test results has been newly constructed. This equation is very simple and calculation error is less than 5% with test results for wide range injection pressure (200~1800 bar) and injection duration ($200{\sim}1800{\mu}s$) conditions. So, it is anticipated that newly constructed simple injection fuel amount model in this study can be efficiently used on engine calibration and control model.

MODELING THE HYDRAULIC CHARACTERISTICS OF A FRACTURED ROCK MASS WITH CORRELATED FRACTURE LENGTH AND APERTURE: APPLICATION IN THE UNDERGROUND RESEARCH TUNNEL AT KAERI

  • Bang, Sang-Hyuk;Jeon, Seok-Won;Kwon, Sang-Ki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.639-652
    • /
    • 2012
  • A three-dimensional discrete fracture network model was developed in order to simulate the hydraulic characteristics of a granitic rock mass at Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The model used a three-dimensional discrete fracture network (DFN), assuming a correlation between the length and aperture of the fractures, and a trapezoid flow path in the fractures. These assumptions that previous studies have not considered could make the developed model more practical and reasonable. The geologic and hydraulic data of the fractures were obtained in the rock mass at the KURT. Then, these data were applied to the developed fracture discrete network model. The model was applied in estimating the representative elementary volume (REV), the equivalent hydraulic conductivity tensors, and the amount of groundwater inflow into the tunnel. The developed discrete fracture network model can determine the REV size for the rock mass with respect to the hydraulic behavior and estimate the groundwater flow into the tunnel at the KURT. Therefore, the assumptions that the fracture length is correlated to the fracture aperture and the flow in a fracture occurs in a trapezoid shape appear to be effective in the DFN analysis used to estimate the hydraulic behavior of the fractured rock mass.

An Empirical Analysis on the Long-term Balance of Bunker Oil Prices Using the Co-integration Model and Vector Error Correction Model (공적분·벡터오차수정모형을 활용한 벙커유 가격의 장기균형 수렴에 관한 실증분석)

  • Ahn, Young-Gyun;Lee, Min-Kyu
    • Korea Trade Review
    • /
    • v.44 no.1
    • /
    • pp.75-86
    • /
    • 2019
  • This study performs a factor analysis that affects the bunker oil price using the Co-integration model and Vector Error Correction Model (VECM). For this purpose, we use data from Clarkson and the analysis results show 17.6% decrease in bunker oil price when the amount of crude oil production increases at 1.0%, 10.3% increase in bunker oil price when the seaborne trade volume increases at 1.0%, 1.0% decrease in bunker oil price when total volume of vessels increases at 1.0%, and 0.003% increase in bunker oil price when 1.0% increase in world GDP, respectively. This study is meaningful in that this study estimates the speed of convergence to long-term equilibrium and identifies the price adjust mechanism which naturally exists in bunker oil market. And it is expected that the future study can provide statistically more meaningful econometric results if it can obtain data during more long-periods and use more various kinds of explanatory variables.

The Impact of Ventilation Strategies on Indoor Air Pollution: A Comparative Study of HVAC Systems Using a Numerical Model (실내오염물질의 환기기술전략에 따른 영향평가 : 수치적 모델을 이용한 HVAC 시스템의 비교연구)

  • Park, Sung-Woo;Song, Dong-Woong;D.J. Moschandreas
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.E
    • /
    • pp.45-54
    • /
    • 1995
  • Indoor air quality models are useful to predict indoor air pollutant concentrations as a function of several indoor factors. Indoor air quality model was developed to evaluate the pollutant removal efficiency of variable-air-volume/bypass filtration system (VAV/BPFS) compared with the conventional variable-air-volume (VAV) system. This model provides relative pollutant removal effectiveness of VAV/BPFS by concentration ratio between the conventional VAV system and VAV/BPFS. The predictions agree closely, from 5 to 10 percent, with the measured values for each energy load. As a results, we recommend the VAV/BPFS is a promising alternative to conventional VAV system because it is capable of reducing indoor air pollutant concentration and maintaining good indoor air quality.

  • PDF

Comparison of Alternate Approaches for Reversible Geminate Recombination

  • Khokhlova, Svetlana S.;Agmon, Noam
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1020-1028
    • /
    • 2012
  • This work compares various models for geminate reversible diffusion influenced reactions. The commonly utilized contact reactivity model (an extension of the Collins-Kimball radiation boundary condition) is augmented here by a volume reactivity model, which extends the celebrated Feynman-Kac equation for irreversible depletion within a reaction sphere. We obtain the exact analytic solution in Laplace space for an initially bound pair, which can dissociate, diffuse or undergo "sticky" recombination. We show that the same expression for the binding probability holds also for "mixed" reaction products. Two different derivations are pursued, yielding seemingly different expressions, which nevertheless coincide numerically. These binding probabilities and their Laplace transforms are compared graphically with those from the contact reactivity model and a previously suggested coarse grained approximation. Mathematically, all these Laplace transforms conform to a single generic equation, in which different reactionless Green's functions, g(s), are incorporated. In most of parameter space the sensitivity to g(s) is not large, so that the binding probabilities for the volume and contact reactivity models are rather similar.

Construction of 3D Geometric Surface Model from Laminated CT Images for the Pubis (치골 부위의 CT 적층 영상을 활용한 3D 기하학적 곡면 모델로의 가공)

  • Hwang, Ho-Jin;Mun, Du-Hwan;Hwang, Jin-Sang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.234-242
    • /
    • 2010
  • 3D CAD technology has been extended to a medical area including dental clinic beyond industrial design. The 2D images obtained by CT(Computerized Tomography) and MRI(Magnetic Resonance Imaging) are not intuitive, and thus the volume rendering technique, which transforms 2D data into 3D anatomic information, has been in practical use. This paper has focused on a method and its implementation for forming 3D geometric surface model from laminated CT images of the pubis. The implemented system could support a dental clinic to observe and examine the status of a patient's pubis before implant surgery. The supplement of 3D implant model would help dental surgeons settle operation plans more safely and confidently. It also would be utilized with teaching materials for a practice and training.

A Stochastic Cost - Volume - Profit Approach to Investment Risk in Advanced Manufacturing Systems

  • Park, Ju-Chull;Park, Chan-S.;Narayanan, Venkat
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.3
    • /
    • pp.299-311
    • /
    • 1995
  • Conventional discounted cash flow techniques fail to capture the risk associated with investments. This paper proposes an annual cash flow model that considers risk, cost structure and inventory liquidation in the evaluation of investment alternatives. The risk differential of investments is included using the capital asset pricing model while the stochastic version of the cost-volume-profit approach is used to consider inventory liquidation and cost structure. Tradeoffs between fixed and variable costs have been investigated, and portrayed using iso-cash flow curves. The proposed cash flow model has been developed, in particular, to enable an accurate evaluation of advanced manufacturing systems.

  • PDF

Predictions of elastic properties of stitched multi-warped knitted composites (다축경편 복합재료 물성의 스티칭 효과)

  • Kim, Hyung-Woo;Chun, Heoung-Jae;Byun, Joon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.125-129
    • /
    • 2005
  • A micromechanical model for predicting the elastic constants of stitched multi-axial warp knitted (MWK) composite is developed. The averaging method is used to obtain effective properties of stitched MWK fabric composites. In the analysis, a representative volume of the MWK fabric composite is identified. The geometric limitations, effects of stitching yarns and design parameters of MWK fabric composites are considered in the model. Then, the elastic properties of stitched MWK fabric composites are predicted. Finally, the predicted elastic constants are validated by comparison with experimental data. The predicted results are in fair agreement with the experimental results.

  • PDF

Study on Formability Enhancement of Electromagnetic Forming using Gurson Plasticity Material Model (Gurson모델을 사용한 전자기성형의 성형성 개선에 대한 연구)

  • Kim, Jeong;Song, Woojin;Kang, Beomsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.98-104
    • /
    • 2013
  • The effect of the tool-sheet interaction on formability enhancement in electromagnetic forming is investigated using FEM. A free bulging and a conical forming die with 0.7mm AL1050 sheet are used to evaluate damage evolution based on Gurson-Tvergaard-Needleman plasticity material model. The impact between the tool and sheet results in complex stress states including compressive hydrostatic stresses, which leads to a suppression of void growth and restrain ascending void volume fraction of the sheet. Therefore, the damage suppression due to the tool-sheet interaction can be the main factor contributing to the increased formability in the electromagnetic forming process.