• Title/Summary/Keyword: Volume model

Search Result 4,993, Processing Time 0.029 seconds

Operational Effects of Special Roundabouts at Large-Scale Rotaries (대형로터리에서의 특수 회전교차로 운영효과)

  • Lim, Jin Kang;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.109-117
    • /
    • 2016
  • PURPOSES : The goal of this study is to analyze the operational effects of special roundabouts at large-scale rotaries in Korea. In pursuing the above, this study gives particular attention to comparing standard roundabouts with special roundabouts. METHODS : This study reviews the various types of roundabouts, creates 270 scenarios, builds networks, and comparatively analyzes the operational effects by using VISSIM simulation model and SSAM(Surrogate Safety Assessment Model). RESULTS : First, the operational effects of standard and signalized roundabouts were analyzed, and it was determined that standard roundabouts are the best in the case of under-saturated traffic volume, and signalized roundabouts are the best in the case of over-saturated traffic volume. Second, the operational benefits of a Turbo roundabout were evaluated to be generally lower than the benefits of a standard roundabout, and the benefits of a Turbo roundabout increase when right-turn traffic volume increases. Finally, the safety conflicts of a Turbo roundabout were determined to be the least and decrease when right-turn traffic volume increases. CONCLUSIONS : This study suggests that Turbo roundabouts rank highest for safety, and signalized roundabouts are best for over-saturated traffic volume. This study can be expected to provide some implications for policy decision-making.

Effective Thermal Conductivity and Diffusivity of Containment Wall for Nuclear Power Plant OPR1000

  • Noh, Hyung Gyun;Lee, Jong Hwi;Kang, Hie Chan;Park, Hyun Sun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.459-465
    • /
    • 2017
  • The goal of this study is to evaluate the effective thermal conductivity and diffusivity of containment walls as heat sinks or passive cooling systems during nuclear power plant (NPP) accidents. Containment walls consist of steel reinforced concrete, steel liners, and tendons, and provide the main thermal resistance of the heat sinks, which varies with the volume fraction and geometric alignment of the rebar and tendons, as well as the temperature and chemical composition. The target geometry for the containment walls of this work is the standard Korean NPP OPR1000. Sample tests and numerical simulations are conducted to verify the correlations for models with different densities of concrete, volume fractions, and alignments of steel. Estimation of the effective thermal conductivity and diffusivity of the containment wall models is proposed. The Maxwell model and modified Rayleigh volume fraction model employed in the present work predict the experiment and finite volume method (FVM) results well. The effective thermal conductivity and diffusivity of the containment walls are summarized as functions of density, temperature, and the volume fraction of steel for the analysis of the NPP accidents.

Wake Volume Characteristics Considering Artificial Reef Canyon Intervals Constructed by Flatly Distributed Artificial Reef Set (평면 분산된 인공어초 집합의 어초협곡 간격에 따른 후류체적 특성)

  • Jung, Somi;Kim, Dongha;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.169-176
    • /
    • 2016
  • Considering the artificial reef (AR) canyon intervals facilitated by flatly distributed placement models, the wake volumes of 25 AR sets were characterized through the following works. First, twenty-five different canyon intervals were established to investigate how the intervals affect the wake volumes of the AR placement models, each with nine cube-type ARs. Second, the element-based finite-volume method was used to facilitate flow analyses. Third, the so-called wake volume concept was adopted, and finally a reasonable placement interval was found based on the size of the wake volumes and the associated unit propagation indices. From the analysis results, it was found that a maximum wake volume of 25.18 m3 was generated when the longitudinal and transverse intervals were fixed at 6 m and 0 m, respectively. Thus, to magnify the wake volume, it is recommended that artificial reefs be placed at intervals of 6 m (3 times the reef length) in the flow direction, with no intervals in the normal direction, implicitly indicating that an intensively stacked placement model is a better option to efficiently secure a larger wake volume for the cube-type ARs.

Development of Nth Highest Hourly Traffic Volume Forecasting Models (고속국도에서의 연평균일교통량에 따른 N번째 고순위 시간교통량 추정모형 개발에 관한 연구)

  • Oh, Ju-Sam
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.13-20
    • /
    • 2007
  • For calculating the number of lane, it is essential to gain the 30th or 100th highest design hourly volume. The design hourly volume obtained from AADT multiplied by design hour factor. In this paper, we developed the regression models fur estimating the 30th highest hour volume and 100th highest hour volume as defined by AADT 50,000 criterion based on the data obtained the 34 monitoring sites in highway. By comparing the performance of the proposed models and conventional models using MAPE, the proposed model for 30th highest design hourly volume reduced the estimator error of 11.83% than that of conventional methods for less than AADT 50,000 and decreased estimation error of 22.17% than that of conventional method for more than AADT 50,000. Moreover, the proposed model for 100th highest design hourly volume reduced the estimator error of 8.16% than that of conventional methods for less than AADT 50,000 and decreased estimation error of 15.25% than that of conventional method for more than AADT 50,000.

  • PDF

Developing Stem Volume Table of Pinus thunbergii Parl. in Southern Region Based on Comparison of Major Taper Equations (주요 수간곡선식 비교에 따른 남부지역 곰솔 수간재적표 개발)

  • Hyun-Soo Kim;Su-Young Jung;Kwang-Soo, Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.453-462
    • /
    • 2024
  • This study was carried out for the purpose of selecting the most appropriate taper equation for the actual stands of Pinus thunbergii in the southern coastal region of Korea and then developing a stem volume table to provide basic data for rational management. To develop a volume table of Pinus thunbergii in this region of Korea, 59 sample trees with various diameter distributions were selected and stem analysis was performed. As a result of stem analysis, two trees with abnormal diameter and height growth as the age increased were rejected, and 57 trees were analyzed. To develop the taper equation, seven major variable exponential equations were used, including Kozak 1988, 1994, 2001, 2002, Bi 2000, Muhairwe 1999, and Sharma and Parton 2009. As a result of parameter estimation and statistical verification, the Kozak 1988 model showed the highest goodness of fit with Fit I (Fit Index), RMSE 1.5620, Bias 0.0031, and MAD 1.0784. The diameter of each 10cm stem ridge for the selected model was estimated, and a stem volume table was produced using the mensuration of division (end area formula) using the Smalian equation. As a result of two-sample T-test for volume table of this study and current yield table, the volume for this study was found to be significantly larger at all observation points (p < 0.001). Even for the same tree species, it is judged that differentiated volume tables are needed for each growth environment characteristic.

LUMPED PARAMETER MODELS OF CARDIOVASCULAR CIRCULATION IN NORMAL AND ARRHYTHMIA CASES

  • Jung, Eun-Ok;Lee, Wan-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.885-897
    • /
    • 2006
  • A new mathematical model of pumping heart coupled to lumped compartments of blood circulation is presented. This lumped pulsatile cardiovascular model consists of eight compartments of the body that include pumping heart, the systemic circulation, and the pulmonary circulation. The governing equations for the pressure and volume in each vascular compartment are derived from the following equations: Ohm's law, conservation of volume, and the definition of compliances. The pumping heart is modeled by the time-dependent linear curves of compliances in the heart. We show that the numerical results in normal case are in agreement with corresponding data found in the literature. We extend the developed lumped model of circulation in normal case into a specific model for arrhythmia. These models provide valuable tools in examining and understanding cardiovascular diseases.

Performance Analysis of the Industrial Inkjet Printing Head Using 1D Lumped Model (1 차원 Lumped 모델을 이용한 산업용 잉크젯 프린팅 헤드 토출 특성 해석)

  • Sim, Won-Chul;Kim, Young-Jae;Park, Chang-Sung;Yoo, Young-Seuck;Joung, Jae-Woo;Oh, Yong-Soo;Park, Sung-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.101-107
    • /
    • 2007
  • Jettability analysis using one-dimensional(1D) lumped parameter model has been investigated to design the industrial inkjet head with proper drop velocity and drop volume. By simplifying the inkjet head system into an equivalent electrical circuit, lumped model has been developed. Performance of the lumped model is verified by the comparison between measured results of droplet velocity and ejection volume and predicted value. Also, the jetting performance of an inkjet head is characterized by varying the design parameter and driving condition. As a result, simulation results shows good agreement with the experimentally measured value. The developed lumped model enables to easily understand the effect of dimension change and predict the jetting performance.

A numerical simulation and validation of heat pump using standing column well(SCW) (스탠딩컬럼웰(SCW)을 적용한 지열히트펌프의 수치적 모델링과 검증)

  • Chang, Jae-Hoon;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.785-790
    • /
    • 2010
  • Geothermal energy is gaining wide attention as a highly efficient renewable energy and being increasingly used for heating/cooling systems of buildings. The standing column well (SCW) is especially efficient, cost-effective, and suitable for Korean geological and hydrological conditions. However, a numerical model that simulates the SCW has not yet been developed and applied in Korea. This paper describes the development of the SCW numerical model using a finite-volume analysis program. The model performs the hydro-thermal coupled analyses and simulates heat transfer through advection, convection, and conduction. The accuracy of the model was verified through comparisons with field data measured at SCWs in Korea. Comparisons indicated that the SCW numerical model can closely predict the performance of a SCW.

  • PDF

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

A study of an oyster monthly forecasting model using the structural equation model approach based on a panel analysis

  • Sukho Han;Seonghwan Song;Sujin Heo;Namsu Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.1001-1013
    • /
    • 2022
  • The purpose of this study is to build an oyster outlook model. In particular, by limiting oyster items, it was designed as a partial equilibrium model based on a panel analysis of a fixed effect model on aquaculture facilities. The model was built with a dynamic ecological equation (DEEM) system that considers aquaculture and harvesting processes. As a result of the estimation of the initial aquaculture facilities based on the panel analysis, the elasticity of the remaining facility volume in the previous month was estimated to be 0.63. According to Nerlove's model, the adjustment coefficient was interpreted as 0.31 and the adjustment speed was analyzed to be very slow. Also, the relative income coefficient was estimated to be 2.41. In terms of elasticity, it was estimated as 0.08% in Gyeongnam, 0.32% in Jeonnam, and 1.98% in other regions. It was analyzed that the elasticity of relative income was accordingly higher in non-main production area. In case of the estimation of the monthly harvest facility volume, the elasticity of the remaining facility volume in the previous month was estimated as 0.53, and the elasticity of the farm-gate price was estimated as 0.23. Both fresh and chilled and frozen oysters' exports were estimated to be sensitive to fluctuations in domestic prices and exchange rates, while Japanese wholesale prices were estimated to be relatively low in sensitivity, especially to the exchange rate with Japan. In estimating the farm-gate price, the price elasticity coefficient of monthly production was estimated to be inelastic at 0.25.