• Title/Summary/Keyword: Volume expansion rate

Search Result 150, Processing Time 0.032 seconds

Fe3O4 Nanoparticles on MWCNTs Backbone for Lithium Ion Batteries

  • Lee, Kangsoo;Shin, Seo Yoon;Yoon, Young Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.376-380
    • /
    • 2016
  • A composite electrode made of iron oxide nanoparticles/multi-wall carbon nanotube (iNPs/M) delivers high specific capacity and cycle durability. At a rate of $200mAg^{-1}$, the electrode shows a high discharge capacity of ${\sim}664mAhg^{-1}$ after 100 cycles, which is ~ 70% of the theoretical capacity of $Fe_3O_4$. Carbon black, carbon nanotube, and graphene as anode materials have been explored to improve the electrical conductivity and cycle stability in Li ion batteries. Herein, iron oxide nanoparticles on acid treated MWCNTs as a conductive platform are combined to enhance the drawbacks of $Fe_3O_4$ such as low electrical conductivity and volume expansion during the alloying/dealloying process. Enhanced performance was achieved due to a synergistic effect between electrically 3D networks of conductive MWCNTs and the high Li ion storage ability of $Fe_3O_4$ nanoparticles (iNPs).

Effects of Vapor Injection on a Compressor in a Transcritical CO2 Cycle (초임계 CO2 사이클에서 가스 인젝션이 압축기 성능에 미치는 영향)

  • Kim, Woo-Young;Shim, Jae-Hwi;Lee, Yong-Ho;Kim, Hyun-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.16-21
    • /
    • 2007
  • Potential advantages of using vapor injection in a two stage rotary compressor for a $CO_2$ heat pump water heater system were addressed in this paper by numerical simulation. Vapor separated from a flash tank in the middle of the expansion process can be used for injection into the second stage suction plenum of the compressor to improve the system performance. Vapor injection increases the intermediate pressure between the two stages, thus increasing the first stage compressor work and reducing that of the second stage. As a whole, however, the compressor input power increases due to injected mass flow rate for the second stage. Computer simulation showed that increment of the cooling capacity by vapor injection exceeded that of the compressor work, thus improving the system performance. COP improvement by vapor injection was calculated to be about 5-14% for normal operating conditions. With vapor injection, a maximum COP was found when the displacement volume of the second stage becomes 90-95% of that of the first stage of the compressor.

Relationship between Compressive Strength of Geo-polymers and Pre-curing Conditions

  • Kim, Hyunjung;Kim, Yooteak
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.155-163
    • /
    • 2013
  • Meta-kaolin (MK) and blast furnace slag (BS) were used as raw materials with NaOH and sodium silicate as alkali activators for making geo-polymers. The compressive strength with respect to the various pre-curing conditions was investigated. In order to improve the recycling rate of BS while still obtaining high compressive strength of the geo-polymers, it was necessary to provide additional CaO to the MK by adding BS. The specimens containing greater amounts of BS can be applied to fields that require high initial compressive strength. Alkali activator(s) are inevitably required to make geo-polymers useful. High temperature pre-curing plays an important role in improving compressive strength in geo-polymers at the early stage of curing. On the other hand, long-term curing produced little to no positive effects and may have even worsened the compressive strength of the geo-polymers because of micro-structural defects through volume expansion by high temperature pre-curing. Therefore, a pre-curing process at a medium range temperature of $50^{\circ}C$ is recommended because a continuous increase in compressive strength during the entire curing period as well as good compressive strength at the early stages can be obtained.

Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

  • Lee, Jong Kyeom;Kim, Tae Yun;Kim, Hyun Su;Chai, Jang-Bom;Lee, Jin Woo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1280-1290
    • /
    • 2016
  • This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

Synthesis of Vertically Aligned CuO Nanorods by Thermal Oxidation (열산화법을 이용한 산화구리 나노선 수직성장)

  • Kim, Jimin;Jung, Hyuck;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A simple thermal oxidation of Cu thin films deposited on planar substrates established a growth of vertically aligned copper oxide (CuO) nanorods. DC sputter-deposited Cu thin films with various thicknesses were oxidized in environments of various oxygen partial pressures to control the kinetics of oxidation. This is a method to synthesize vertically aligned CuO nanorods in a relatively shorter time and at a lower cost than those of other methods such as the popular hydrothermal synthesis. Also, this is a method that does not require a catalyst to synthesize CuO nanorods. The grown CuO nanorods had diameters of ~100 nm and lengths of $1{\sim}25{\mu}m$. We examined the morphology of the synthesized CuO nanorods as a function of the thickness of the Cu films, the gas environment, the oxidation time, the oxidation temperature, the oxygen gas flow rate, etc. The parameters all influence the kinetics of the oxidation, and consequently, the volume expansion in the films. Patterned growth was also carried out to confirm the hypothesis of the CuO nanorod protrusion and growth mechanism. It was found that the compressive stress built up in the Cu film while oxygen molecules incorporated into the film drove CuO nanorods out of the film.

An Experimental Study on the fluidity properties of Polymer Concrete According to Replacement Ratio of Rapidly-Chilled Steel Slag and polymer resin (급냉 제강 슬래그 대체율과 폴리머 수지에 따른 폴리머 콘크리트의 유동특성에 관한 실험적 연구)

  • Choi, Duck-Jin;Kim, Jae-Won;Sun, Joung-Soo;Kim, Ha-Suk;Hwang, Eui-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.75-78
    • /
    • 2007
  • The steel slag, a by-product which is produced by refining pig iron during the manufacture of steel, is mainly used as road materials after aging. It is necessary to age steel slag for long time in air because the reaction with water and free-CaO in steel slag could make the expansion of volume. This problem prevents steel slag from being used as aggregate for concrete. However, steel slag used in this study was controled by a air-jet method which rapidly cools substance melted at a high temperature. The rapidly-chilled method would prevent from generation of free-CaO in steel slag. Also, Molten steel slag rapidly-chilled by air in high speed becomes a fine aggregate of nearly spherical shape. This study dealt with the influence of the using rate of rapidly-chilled steel slag and polymer resin on fluidity of polymer concrete, as a results Since RCSS has spherical shape and high density, up to replacement ratio of 100%, increases concrete fluidity under same polymer content and decrease polymer content in order to secure the same fluidity

  • PDF

Effect of Alkali Salts Adding on the Cooking Quality in Dried Noodles (면류용 알칼리제 처리가 건면의 조리특성에 미치는 영향)

  • 문태용;이성갑
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.3
    • /
    • pp.71-79
    • /
    • 2000
  • The effects of alkali salts adding on the cooking quality improving in dried noodles were investigated in the good texture maintaining for preventing solid soluble losses ,through chemical analysis and actual manufacturing practice ,the following results were obtained. Experiments were took a special flour of ASW:DNS=70:30, thickening agent(TA) composed of K2CO3 58%, Na2CO3 36% and Na4P2076%, and emulsified oil(EO) mixing of corn oil 44%, polysorbate 23%, emulsifier(ester of glycerin and fatty acids) 21%, soy lecithin 12%. When the mixing ratio of TA and EO to flour, is 0.03 and 1.5%(w/w) or morel than, satisfied the good quality. The water soluble solid matters content of the lowest 3.2% in the treating group that TA and EO is 0.03 and 1.5%(w/w) respectively, comparing to the 7.3% in the control group provides a excellent cooking quality. The research achieves the similar effects at specific gravity, water absorption ratio, weight increasing rate and volume expansion ratio. According to appearance test the more treating of TA turn the noodle into deeper yellow-green color. Turning to the deeper yellow color according to the increasing of EO provides better

  • PDF

VOID DEFECTS IN COBALT-DISILICIDE FOR LOGIC DEVICES

  • Song, Ohsung;Ahn, Youngsook
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.389-392
    • /
    • 1999
  • We employed cobalt-disilicide for high-speed logic devices. We prepared stable and low resistant $CoSi_2$ through typical fabrication process including wet cleaning and rapid thermal process (RTP). We sputtered 15nm thick cobalt on the wafer and performed RTP annealing 2 times to obtain 60nm thick $CoSi_2$. We observed spherical shape voids with diameter of 40nm in the surface and inside $CoSi_2$ layers. The voids resulted in taking over abnormal junction leakage current and contact resistance values. We report that the voids in $CoSi_2$ layers are resulted from surface pits during the ion implantation previous to deposit cobalt layer. Silicide reaction rate around pits was enhanced due to Gibbs-Thompson effects and the volume expansion of the silicidation of the flat active regime trapped dimples. We confirmed that keeping the buffer oxide layer during ion implantation and annealing the silicon surface after ion implantation were required to prevent void defects in CoSi$_2$ layers.

  • PDF

Correlation Analysis between Delay and Turnaround Time at Jeju International Airport (제주국제공항의 지연과 Turnaround Time 간의 상관관계 분석)

  • Lee, Choongsub;Kim, Dongsin;Kim, Hyewook;Baik, Hojong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • The capacity of Jeju International Airport has reached its limit due to a surge in air traffic demand such as passengers and cargo and the continuous expansion of Low Cost Carriers (LCC). Despite COVID-19 that has began in November 2019, Jeju International Airport still has continuous demand in terms of passenger and cargo transportation. As a result, it is undeniable that the delay rate also unexpectedly increased as the air traffic volume at Jeju International Airport continued to increase. In this study, the correlation between Turnaround Time and delay rates of national airlines is analyzed based on past flight data at Jeju International Airport, and the cumulative delay time trend for sampled airlines is compared with Turnaround Time. Through this study, it is expected to contribute to securing aircraft operation efficiency and on-time by analyzing delays related to Turnaround Time at Jeju International Airport.

Effect of Surface Area and Crystallinity of Amorphous Carbon Conductive Agent in SiOx Anode on the Performance of Lithium Ion Battery (리튬이온전지용 비정질 탄소 도전재의 표면적 및 흑연화도에 따른 SiOx 음극 활물질 특성 연구 )

  • Hyoung-Kyu Kang;Sung-Soo Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2023
  • Herein we investigated the effect of the conductive agent on the electrochemical performance of the SiOx anode. SiOx anodes have a relatively low volume expansion (~160%) compared to Pure-silicon, but have a problem in that they have a poor electrical conductivity characteristic. In this study, physical and electrochemical measurements were performed using two 0-dimensional amorphous carbon conductive agents with different crystallinity and surface area. The crystal structure of the conductive agents and the local graphitization degree were analyzed through XRD and Raman, and the surface area of the particles was observed through BET. In addition, the electrical performance according to the graphitization degree of the conductive agents was confirmed through a 4-point probe. As a result of the electrochemical cycle and rate performance, it was confirmed that the performance of SiOx using a conductive agent having a low graphitization degree and a high surface area was improved. The results in this study suggest that the graphitization degree and surface area of the amorphous carbon conductive agent may play an important role in the SiOx electrode.