• Title/Summary/Keyword: Volume effect

Search Result 5,908, Processing Time 0.036 seconds

Effect of Temperature and Pressure on the Viscosity of Benzene (벤젠의 점성도에 대한 온도와 압력의 영향)

  • Jeong Rim Kim;Jin Burm Kyong;Mi Hyun Lew
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1003-1009
    • /
    • 1993
  • The viscosities of benzene have been determined at several temperatures and pressures to investigate the effect of temperature and pressure on the viscosity of benzene in liquid phase. When a falling ball viscometer with a constant volume contained a given amount of liquid benzene at desired temperatures and pressures, the viscosities of benzene in the viscometer could be evaluated from the measurements of the falling time of a skinker. The variations of the specific volume and the free volume of liquid benzene with temperature and pressure were, from the results, searched out. Finally, the effects of temperature and pressure on the viscosity of benzene were discussed by means of the variations of free volume with temperature and pressure.

  • PDF

Dye removal from water using emulsion liquid membrane: Effect of alkane solvents on efficiency

  • Ghaemi, Negin;Darabi, Farzaneh;Falsafi, Monireh
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.361-372
    • /
    • 2019
  • Effect of different alkane based solvents on the stability of emulsion liquid membrane was investigated using normal alkanes (n-hexane, n-heptane, n-octane and n-decane) under various operating parameters of surfactant concentration, emulsification time, internal phase concentration, volume ratio of internal phase to organic phase, volume ratio of emulsion phase to external phase and stirring speed. Results of stability revealed that emulsion liquid membrane containing n-octane as solvent and span-80 (5 % (w/w)) as emulsifying agent presented the highest amount of emulsion stability (the lowest breakage) compared with other solvents; however, operating parameters (surfactant concentration (5% (w/w)), emulsification time (6 min), internal phase concentration (0.05 M), volume ratio of internal phase to organic phase (1/1), volume ratio of emulsion phase to external phase (1/5) and stirring speed (300 rpm)) were also influential on improving the stability (about 0.2% breakage) and on achieving the most stable emulsion. The membrane with the highest stability was employed to extract acridine orange with various concentrations (10, 20 and 40 ppm) from water. The emulsion liquid membrane prepared with n-octane as the best solvent almost removed 99.5% of acridine orange from water. Also, the prepared liquid membrane eliminated completely (100%) other cationic dyes (methylene blue, methyl violet and crystal violet) from water demonstrating the efficacy of prepared emulsion liquid membrane in treatment of dye polluted waters.

Permeability prediction of plain woven fabric by using control volume finite element method (검사체적 방법을 이용한 평직의 투과율 계수 예측)

  • Y. S. Song;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.181-183
    • /
    • 2002
  • The accurate permeability for preform is critical to model and design the impregnation of fluid resin in the composite manufacturing process. In this study, the in-plane and transverse permeability for a woven fabric are predicted numerically through the coupled flow model which combines microscopic with macroscopic flow. The microscopic and macroscopic flow which are flows within the micro-unit and macro-unit cell, respectively, are calculated by using 3-D CVFEM(control volume finite element method). To avoid checker-board pressure field and improve the efficiency on numerical computation, A new interpolation function for velocity is proposed on the basis of analytic solutions. The permeability of plain woven fabric is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Based on the good agreement of the results, the relationships between the permeability and the structures of preform such as the fiber volume fraction and stacking effect can be understood. The reverse and the simple stacking are taken in account. Unlike past literatures, this study is based on more realistic unit cell and the improved prediction of permeability can be achieved. It is observed that in-plane flow is more dominant than transverse flow in the real flow through preform and the stacking effect of multi-layered preform is negligible. Consequently, the proposed coupled flow model can be applied to modeling of real composite materials processing.

  • PDF

Effect of sintering programs and surface treatments on monolithic zirconia

  • Seren Nur Dokuzlu ;Meryem Gulce Subasi
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.1
    • /
    • pp.25-37
    • /
    • 2024
  • PURPOSE. To investigate the effect of sintering programs and surface treatments on surface properties, phase transformation and flexural strength of monolithic zirconia. MATERIALS AND METHODS. Zirconia specimens were sintered using three distinct sintering programs [classic (C), speed (S), and superspeed (SS)] (n = 56, each). One sample from each group underwent scanning electron microscopy (SEM) and grain size analysis following sintering. Remaining samples were divided into five subgroups (n = 11) based on the surface treatments: control (CL), polish (P), glaze (G), grind + polish (GP), and grind + glaze (GG). One sample from each subgroup underwent SEM analysis. Remaining samples were thermally aged. Monoclinic phase volume, surface roughness, and three-point flexural strength were measured. Monoclinic phase volume and surface roughness were analyzed by Kruskal-Wallis and Dunn tests. Flexural strength was analyzed by two-way ANOVA and Weibull analysis. The relationships among the groups were analyzed using Spearman's correlation analysis. RESULTS. Sintering program, surface treatment, and sintering × surface treatment (P ≤ .010) affected the monoclinic phase volume, whereas the type of surface treatment and sintering × surface treatment affected the surface roughness (P < .001). Type of sintering program or surface treatment did not affect the flexural strength. Weibull analysis revealed no significant differences between the m and σo values. Monoclinic phase volume was positively correlated with surface roughness in the SGG and SSP groups. CONCLUSION. After sintering monolithic zirconia in each of the three sintering programs, each of the surface treatments can be used. However, for surface quality and aging resistance, G or GG can be recommended as a surface finishing method.

Prediction of Failure Condition for Aloy Seel for Mchine Sructural Use by Design of Experiment (실험계획법을 이용한 기계구조용 특수강의 손상상태 예측)

  • Bae Hyo-jun;Lee Sang-Jae;Kim Young-Hee;Park Heung-Sik
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.316-322
    • /
    • 2004
  • Wear volume was used generally to analyze the moving state of lubricated machine. But It is difficult of getting the correct wear volume because wear volume of it is progressed always unstably with a large amplitude on working condition. If correct analysis of wear volume on working condition for lubricated machine can be possible, it can be effect on diagnosis of failure condition. The purpose of this study is carried out to analysis friction factors affecting on wear volume for prediction of failure condition of alloy steel for machine structural use by design of experiment. The results show that the most important friction factors affecting on wear volume was applied load, neat sliding distance, sliding speed and materials.

  • PDF

Physical and Mechanical Properties of Blast Furnace Cement Concrete with Polypropylene Fiber (폴리프로필렌 섬유를 보강한 고로시멘트 콘크리트의 물리·역학적 특성)

  • Jun, Hyung Soon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.151-158
    • /
    • 2012
  • This study will not only prove experimental dynamic properties which are classified to slump, compressed strength, bending strength and toughness index blast-furnace cement concrete with polypropylene (PP) fiber that refer properties and volume of it, but also establish a basic data in order to use PP fiber reinforced blast-furnace cement concrete. The slump didn't changed by PP fiber volume $5kgf/m^3$ because of flexibility of fiber in despite of loose mixing. The reason why the slump decreased steadily by PP fiber volume $3kgf/m^3$ was rising contact surface of water. The compressed strength indicated a range of 19.49~26.32 MPa. The tensile strength indicated a range of 2.10~2.44 MPa. The bending strength was stronger about 3~16 % in case of mixing with PP fiber volume than normal concrete. The flexure strength indicated a range of 4.30~4.83 MPa. The toughness indicated a range of $0{\sim}19.88N{\cdot}mm$ and was stronger about 6.7 times in case of PP fiber volume $9kg/m^3$ than PP fiber volume $1kg/m^3$. The pavement with PP fiber volume over such a fixed quantity in the roads of a respectable amount load can have a effect to prevent not only resistance against clack but also rip off failures.

Body Height Effect on Brain Volumes in Youth Decreases in Old Age in Koreans

  • Koh, In-Song
    • Interdisciplinary Bio Central
    • /
    • v.3 no.3
    • /
    • pp.11.1-11.5
    • /
    • 2011
  • The MRI (magnetic resonance imaging) volumetric analysis of the brain was performed in 59 healthy elderly Koreans (aged 62-76 years; 34 male, 25 female) to investigate whether the previously reported significant correlations between body height and brain volumes in the young aged Koreans (20's) still exist in the old aged Koreans (60's and 70's). Unlike previously reported significant correlations in the young aged Koreans, neither the correlation between whole brain volume and body height in male nor the correlation between cerebellar volume and body height in female show any significance in the old aged Koreans. The significant correlation between body height and whole brain volume was still observed when both male and female data were combined (r=0.27, P<0.05), but the correlation coef-ficient and the level of significance markedly decreased from those of previously reported Korean youth data (r=0.67, P<0.01). Simple linear regression analysis shows decrease of explanatory power of height (measured in $r^2$) from 44% in the youth group to 7% in the old age group on the variance of whole brain volume. Multiple linear regression analysis shows that age and sex, rather than height, are major explanatory variables for whole brain volume in the old aged Koreans. The loss of correlations in the aged group is suspected to be mainly due to age related brain volume changes.

A Study on the Volume Change in Unsaturated Clayey Soil (불포화 정성토의 체적변화에 대한 연구)

  • Chang, Pyoung-Wuck;Gil, Sang-Choon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.37-42
    • /
    • 1998
  • This study was performed to evaluate the characteristics of volume change is unsaturated clayed soil. The medium-plastic clay was selected and compacted by 50% of Proctor standard compaction energy at 6% higher moisture content than its OMC. A series of isotropic compression tests and triaxial shear tests were performed. The results of the study are summarized as follows. At each matric suction, when the matric suction was increased, the yield stress was increased and slope of volume change was decreased. The more net mean stress was, the less the quantity of volume change was. In shear test, the volumetric strain was much rapidly changed in large matric than in low matric suctions. But the effect of matric suction to volume change disappeared under high net mean stress. At lower deviator stress the more matric suction was, the higher volume change was. But As the matric suction was increasing, the behavior of the unsaturated clayey soil was similar to that of saturated clayey soil. Volume change in the unsaturated clayey soil can be represented as a unique plane in three-dimensional space, which is the axes of net mean stress, matric suction and void ratio.

  • PDF

Mechanical Properties of Unidirectional Carbon-carbon Composites as a Function of Fiber Volume Content

  • Dhakate, S.R.;Mathur, R.B.;Dham, T.L.
    • Carbon letters
    • /
    • v.3 no.3
    • /
    • pp.127-132
    • /
    • 2002
  • Unidirectional polymer composites were prepared using high-strength carbon fibers as reinforcement and phenolic resin as matrix precursor with keeping fiber volume fraction at 30, 40, 50 and 60% respectively. These composites were carbonized at $1000^{\circ}C$ and graphitised at $2600^{\circ}C$ in the inert atmosphere. The carbonized and graphitised composites were characterized for mechanical properties as well as microstructure. Microscopic studies were carried out of the polished surface of carbonized and graphitised composites after etching by chromic acid, to understand the effect of fiber volume fraction on oxidation at fiber-matrix interface. It is found that the flexural strength in polymer composites increases with fiber volume fraction and so does for the carbonised composites. However, the trend was found to be reversed in graphitised composites. In all the carbonized composites anisotropic region has been observed at fiber-matrix interface which transforms into columnar type microstructure upon graphitisation. The extension of strong and weak columnar type microstructure is function of fiber volume fraction. SEM microscopy of the etched surface of the sample reveal that composites containing 40% fiber volume has minimum oxidation at the interface, revealing a strong interfacial bonding.

  • PDF

The Effect of Lipid and Collagen Content, Drip Volume on the Muscle Hardness of Cultured and Wild Red sea bream (Pagrosomus auratus) and Flounder (Paralichthys olivaceus) (지질 및 콜라겐, Drip 량이 양식 및 자연산 도미와 넙치 육질의 경도에 미치는 영향)

  • 이경희;이영순
    • Korean journal of food and cookery science
    • /
    • v.16 no.4
    • /
    • pp.352-357
    • /
    • 2000
  • This study was conducted to investigate the effect of the lipid and collagen content and drip volume on the hardness of fish meat. Red sea bream (cultured and wild) and flounder (cultured, cultured with obosan and wild) were used for this study. Textural differences between cultured and wild meats were determined by the measurements of hardness, lipid and collagen content, and drip volume. Lipid content of the dorsal muscle was higher especially in cultured red sea bream (3.32%) than in wild one. Cultured and wild flounder contained lower content of lipid than red sea bream. The content of collagen was higher in cultured flounder fed with obosan (8.37 mg/g muscle) and wild flounder (8.02 mg/g muscle) than others. Drip volume was the highest in cultured flounder fed with obosan (8.67%). The hardness of raw meat was correlated with the contents of lipid (r= -0.7063) and collagen (r= 0.8307), significantly. Cultured fish contained more lipid and less collagen than wild one. So, the hardness of these fish meats was lower than wild one. However, cultured flounder fed with obosan showed no difference in hardness compared with wild one. In the cooked meat, there was no relationship between the hardness of fish meat and the contents of lipid and collagen. But, the drip volume was significantly related with the hardness (r= 0.6870). From these results, the factors contributing the textural difference between wild and cultured fish meat would be the lipid and collagen contents, and two ways to improve the texture of cultured fish meat could be suggested. One is to lower the lipid content by feed control, and the other is to raise the collagen content by inducing more fish movement.

  • PDF