Korean journal of food and cookery science (한국식품조리과학회지)
- Volume 16 Issue 4
- /
- Pages.352-357
- /
- 2000
- /
- 2287-1780(pISSN)
- /
- 2287-1772(eISSN)
The Effect of Lipid and Collagen Content, Drip Volume on the Muscle Hardness of Cultured and Wild Red sea bream (Pagrosomus auratus) and Flounder (Paralichthys olivaceus)
지질 및 콜라겐, Drip 량이 양식 및 자연산 도미와 넙치 육질의 경도에 미치는 영향
Abstract
This study was conducted to investigate the effect of the lipid and collagen content and drip volume on the hardness of fish meat. Red sea bream (cultured and wild) and flounder (cultured, cultured with obosan and wild) were used for this study. Textural differences between cultured and wild meats were determined by the measurements of hardness, lipid and collagen content, and drip volume. Lipid content of the dorsal muscle was higher especially in cultured red sea bream (3.32%) than in wild one. Cultured and wild flounder contained lower content of lipid than red sea bream. The content of collagen was higher in cultured flounder fed with obosan (8.37 mg/g muscle) and wild flounder (8.02 mg/g muscle) than others. Drip volume was the highest in cultured flounder fed with obosan (8.67%). The hardness of raw meat was correlated with the contents of lipid (r= -0.7063) and collagen (r= 0.8307), significantly. Cultured fish contained more lipid and less collagen than wild one. So, the hardness of these fish meats was lower than wild one. However, cultured flounder fed with obosan showed no difference in hardness compared with wild one. In the cooked meat, there was no relationship between the hardness of fish meat and the contents of lipid and collagen. But, the drip volume was significantly related with the hardness (r= 0.6870). From these results, the factors contributing the textural difference between wild and cultured fish meat would be the lipid and collagen contents, and two ways to improve the texture of cultured fish meat could be suggested. One is to lower the lipid content by feed control, and the other is to raise the collagen content by inducing more fish movement.