• Title/Summary/Keyword: Volume and temperature of gas

Search Result 461, Processing Time 0.027 seconds

A Study on Tribological Characteristics of Powder Sintered Fe-base Alloy (SMF9060) (Fe계 합금 분말 소결품(SMF9060)의 마모 특성 연구)

  • Kim, Sang Youn;Kim, Dae Wook;Park, Yeong Min;Shin, Dong Chul;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.2
    • /
    • pp.65-71
    • /
    • 2014
  • SMF9060 material is a Fe-based powder sintered alloy that is used for several automobile components such as Synchronize Hub, oil pump and transmission. These components are required excellent wear resistance and durability. In this study, we have performed a dry wear test at the ambient air and Ar gas conditions in the room temperature, and a lubricant wear test at the room temperature and engine oil temperature of $100^{\circ}C$. The amount of wear volume and coefficient friction are measured by a Profilometer and a Ball on disk type wear tester. The wear volume in Ar gas condition was a little higher than that in the ambient air condition. However the wear volume in the lubricant wear condition was much lower than in the dry wear condition. XRD analysis of the debris in Ar gas condition showed that the oxide film was not formed.

A Study on the Measurement of Burnet Gas Temperature in Premized Combustion by Modified Two-Color Method (변형 2색법에 의한 예혼합기 연소의 연소가스온도 측정에 관한 연구)

  • 배명환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.43-54
    • /
    • 1999
  • The effects of equivalence ratio and pressure on burnt gas temperature in premixed fuel rich propane-oxygen-inert gas combustion are investigated over the wide ranges of equivalence ration from 1.5 to 2.7 and pressure from 0.1 to 7 MPa by using a specially designed disk -type constant-voume combustion chamber, The premixtures are simultaneously ignited by eight spark plugs located on the circumference of combustion chamber with 45 degree interals. The eight converging flames compress the end gases to high pressures. The burnt gas temperature is meausured by the nmodifie dtow-colr pyrometry method. The transmissivity in the chamber center during the final stage of combustion at the hightest pressure is meausred by in situ laser extinction method. It is found that a temperature difference between the burnt gas temperature measured by mofidied and conventrational two-color method is 10 to 20 K, but the accuracy of the modified two-color methdo is higher if the local transmissivity in observed region is uniform , and the combustion at higher pressures results gas density conditions and the burnt gas temperature increases as the volume fraction of argon is increased because the specific heat of argon is lower compared to that of nitrogen with a constant equivalence ratio.

  • PDF

Automated Cold Volume Calibration of Temperature Variation in Cryogenic Hydrogen Isotope Sorption Isotherm (극저온(20K) 수소동위원소 흡착 등온선의 온도 변화에 대한 자동 저온 부피 교정)

  • Park, Jawoo;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.336-341
    • /
    • 2019
  • The gas adsorption isotherm requires accurate measurement for the analysis of porous materials and is used as an index of surface area, pore distribution, and adsorption amount of gas. Basically, adsorption isotherms of porous materials are measured conventionally at 77K and 87K using liquid nitrogen and liquid argon. The cold volume calibration in this conventional method is done simply by splitting a sample cell into two zones (cold and warm volumes) by controlling the level sensor in a Dewar filled with liquid nitrogen or argon. As a result, BET measurement for textural properties is mainly limited to liquefied gases (i.e. $N_2$ or Ar) at atmospheric pressure. In order to independently investigate other gases (e.g. hydrogen isotopes) at cryogenic temperature, a novel temperature control system in the sample cell is required, and consequently cold volume calibration at various temperatures becomes more important. In this study, a cryocooler system is installed in a commercially available BET device to control the sample cell temperature, and the automated cold volume calibration method of temperature variation is introduced. This developed calibration method presents a reliable and reproducible method of cryogenic measurement for hydrogen isotope separation in porous materials, and also provides large flexibility for evaluating various other gases at various temperature.

End-Gas Temperature Measurments in a DOHC Spark-Ignition Engine Using CARS (CARS를 이용한 DOHC 스파크 점화 기관의 말단 가스 온도 측정)

  • 최인용;전광민;박철웅;한재원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.122-128
    • /
    • 1999
  • CARS(Coherent anti-Stokes Raman Spectroscopy) temperature measurement under engine-like condition was validated by measuring unburned gas temperatures of premixed propane-air flame in a constant volume combustion chamber. The measured temperatures were compared with predictions of 2 zone flame propagation model. End-gas temperatures were measured were measured by CARS technique in a conventional 4 cylinder DOHC spark-ignition engine fueled with PRF 80. Cylinder pressure was measured simultaneously with CARS signal and used as a parameter on fitting CARS spectrum to library of theoretical spectra. There was a good agreement between the measured temperature and adiabatic core temperature calculated from measured cylinder pressure. Significant heating by pre-flame reaction in the gas was observed in the late part of compression stroke.

  • PDF

Properties of Phosphorus Doped ${\mu}c$-Si:H Thin Films Prepared by PECVD (PECVD에 의하여 제조된 Phosphorus-Doped ${\mu}c$-Si:H 박막의 특성)

  • Lee, J.N.;Moon, D.G.;Ahn, B.T.;Im, H.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.22-27
    • /
    • 1992
  • Phosphorus doped hydrogenated microcrystalline silicon (${\mu}c$-Si:H) thin films were deposited by PECVD (Plasma Enhanced Chemical Vapour Deposition) method using 10.2% $SiH_4$ gas (diluted in Ar) and 308ppm $PH_3$ gas (diluted in Ar). The structural, optical and electrical properties of the films were investigated as a function of substrate temperature(15 to $400^{\circ}C$) and RF power(10 to 120W). The thin film deposited by varing substrate temperature had columnar structure and microcrystalline phase. The volume fraction of microcrystalline phase in the films deposited at RF power of 80W, increased with increasing substrate temperature up to $200^{\circ}C$, and then decreased with further increasing substrate temperature. Volume fraction of microcrystalline phase increased monotonously with increasing RF power at substrate temperature of $250^{\circ}C$. With increasing volume fraction of microcrystalline, electrical resistivity of films decreased to 0.274 ${\Omega}cm$.

  • PDF

A Study on the exhaust gas characteristics of the vehicle gasoline according to the ambient temperature (대기온도에 따른 휘발유 자동차의 배출가스 특성에 관한 연구)

  • Lim, Jae-Hyuk;Kim, Ki-Ho;Kim, Sung-Woo;Lee, Min-Ho;Oh, Sang-Gi
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.47-53
    • /
    • 2015
  • Korea is the geographic location during the summer, the temperature rising to $35^{\circ}C$ and winter temperature is $-15^{\circ}C$ to reduce the air temperature changes, such as relatively large compared to other countries. This increase or decrease of the harmful exhaust gas discharged from automobile substantially inconvenience a significant impact on the active side of the car engine temperature and exhaust gas reducing device receives a large impact on the atmospheric temperature is regulation to be different. However, domestic vehicle emissions test temperature of $20{\sim}30^{\circ}C$ is it does not reflect this situation the actual test temperature to accurately measure the exhaust gas volume of the vehicle is difficult. In this study, domestic automobile exhaust gas test conditions of a test temperature $20{\sim}30^{\circ}C$ various temperatures, including (35, 25, 0, -7, -15, $-25^{\circ}C$) under the two vehicles (2.0L MPI, 2.4 L GDI) as was discussed with respect to the exhaust gas characteristics of the vehicle according to the ambient temperature gas. As a result, domestic emissions test temperature of $25^{\circ}C$ than average conditions were temperature decreases greenhouse gas emissions and increase overall increased by up to 15 times higher. Air temperature and the engine exhaust gas inconvenience a direct effect on the activation temperature required in the reduction unit is determined to be an increase of emissions and greenhouse gases, and also an increase in the variety of lubricants based lubricating and viscosity reduction, such as the engine oil due to the low temperature of these result It is considered that shows the.

Deformation Analysis of Self-regulating Bellows in Joule-Thomson Cryocooler (줄-톰슨 극저온 냉각기용 벨로우즈의 변형해석)

  • Lee, Sang-Eun;Lee, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.100-107
    • /
    • 2008
  • Bellows is an important component in Joule-Thomson cryocooler, which minimize the excessive flow of the cryogenic gas. The bellows is made of Monel 400 and its geometry is an axial symmetric shell. During cool-down process, the pressure and volume within bellows must be satisfied with Benedict-Webb-Rubin state equation. Moreover, Poisson's ratio of Monel 400 is nearly constants, but its Young's modulus varies for a drop in temperature. Under these conditions, bellows contracts in the axial direction like a spring. To evaluate deformation of bellows at cryogenic temperature, the numerical calculation of the volume within bellows and finite element analysis are iteratively used in this research. the numerical results show that deformation of the bellows is approximately linear for change of temperature.

Study on Gas Hydrates for the Solid Transportation of Natural Gas

  • Kim, Nam-Jin;Kim, Chong-Bo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.699-708
    • /
    • 2004
  • Natural gas hydrate typically contains 85 wt.% water and 15 wt.% natural gas, and commonly belongs to cubic structure I and II. When referred to standard conditions, 1 ㎤ solid hydrate contains up to 200㎥ of natural gas depending on pressure and temperature. Such the large volume of natural gas hydrate can be utilized to store and transport a large quantity of natural gas in a stable condition. In the present investigation, experiments were carried out for the formation of natural gas hydrate governed by pressure, temperature, gas compositions, etc. The results show that the equilibrium pressure of structure II is approximately 65% lower and the solubility is approximately 3 times higher than structure I. It is also found that for the sub-cooling of structure I and II of more than 9 and 11 K respectively, the hydrates are rapidly being formed. It is noted that utilizing nozzles for spraying water in the form of droplets into the natural gas dramatically reduces the hydrate formation time and increases its solubility at the same time.

Off-design Characteristics for Ambient Air Temperature and Turbine Load of Gas Turbine Pre-swirl System (가스터빈 프리스월 시스템의 외기 온도와 터빈 부하 조건에 따른 탈설계점 특성 분석)

  • Park, Hyunwoo;Lee, Jungsoo;Cho, Geonhwan;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.881-889
    • /
    • 2019
  • The pre-swirl system is the device that minimizes energy loss of turbine cooling airflow from the stationary parts into rotating parts. In this paper, an off-design analysis was conducted for the ambient air temperature and turbine load conditions. The discharge coefficient was constant for ambient air temperature and turbine load. However, adiabatic effectiveness was increased. This is due to the volume flow rate. The volume flow rate was increased at higher ambient temperature and higher turbine load. It means that the volume of cooling air was increased and the cooling performance of the air was improved. Consequently, adiabatic effectiveness increased by 30.46% at 100% turbine load compared to 20% turbine load. And increased by 18.42% at 55℃ ambient air temperature compared to -20℃ ambient air temperature.

Simulation of a power cycle for a single-cylinder 4-stroke cycle spark ignition engine (단기통 4사이클 스파아크 점화기관 동력사이클의 시뮬레이션)

  • 조양수;유병철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.47-61
    • /
    • 1983
  • In this paper the simulation of a thermodynamic power cycle for a 4-stroke, single-cylinder, spark-ignition engine was studied. In this simulation the cylinder volume was restricted to two zones, a burnt and an unburnt zone, and the convective heat transfer from cylinder contents to surroundings was considered. The chemical species in burnt gas considered was 12 species including H$_{2}$O, H$_{2}$, OH, H, N$_{2}$, NO, N, CO$_{2}$, CO, $O_{2}$, O and Ar. Using this model, computer program for compression, ignition and expansion processes was composed and pressure, temperature and composition of cylinder gas at each crank angle were computed. The composition of CO$_{2}$, CO, $O_{2}$ in the burnt gas when exhaust valve opens, the maximum temperature, the maximum flame speed and the combustion duration were also computed as a function of equivalence ratio. The relation between burnt mass fraction and burnt volume fraction was also computed.

  • PDF